10 research outputs found

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    Ariel: Enabling planetary science across light-years

    No full text
    Ariel Definition Study ReportAriel Definition Study Report, 147 pages. Reviewed by ESA Science Advisory Structure in November 2020. Original document available at: https://www.cosmos.esa.int/documents/1783156/3267291/Ariel_RedBook_Nov2020.pdf/Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Ariel: Enabling planetary science across light-years

    No full text
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
    corecore