64 research outputs found

    Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism

    Full text link
    The oscillation of tunnel splitting in the biaxial spin system within magnetic field along the anisotropy axis is analyzed within the particle mapping approach, rather than in the (\theta-\phi) spin coherent-state representation. In our mapping procedure, the spin system is transformed into a particle moving in the restricted S1S^1 geometry whose wave function subjects to the boundary condition involving additional phase shift. We obtain the new topological phase that plays the same role as the Wess-Zumino action in spin coherent-state representation. Considering the interference of two possible trajectories, instanton and anti-instanton, we get the identical condition for the field at which tunneling is quenched, with the previous result within spin coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte

    An experimental and computational investigation of structure and magnetism in pyrite Co1−x_{1-x}Fex_xS2_2: Chemical bonding and half-metallicity

    Full text link
    Bulk samples of the pyrite chalcogenide solid solutions Co1−x_{1-x}Fex_xS2_2 0 <= x <= 0.5, have been prepared and their crystal structures and magnetic properties studied by X-ray diffraction and SQUID magnetization measurements. Across the solution series, the distance between sulfur atoms in the persulfide (S22−_2^{2-}) unit remains nearly constant. First principles electronic structure calculations using experimental crystal structures as inputs point to the importance of this constant S-S distance, in helping antibonding S-S levels pin the Fermi energy. In contrast hypothetical rock-salt CoS is not a good half metal, despite being nearly isostructural and isoelectronic. We use our understanding of the Co1−x_{1-x}Fex_xS2_2 system to make some prescriptions for new ferromagnetic half-metals.Comment: 8 pages including 9 figure

    Excess Spin and the Dynamics of Antiferromagnetic Ferritin

    Full text link
    Temperature-dependent magnetization measurements on a series of synthetic ferritin proteins containing from 100 to 3000 Fe(III) ions are used to determine the uncompensated moment of these antiferromagnetic particles. The results are compared with recent theories of macroscopic quantum coherence which explicitly include the effect of this excess moment. The scaling of the excess moment with protein size is consistent with a simple model of finite size effects and sublattice noncompensation.Comment: 4 pages, 3 Postsript figures, 1 table. Submitted to PR

    Relaxation and Landau-Zener experiments down to 100 mK in ferritin

    Get PDF
    Temperature-independent magnetic viscosity in ferritin has been observed from 2 K down to 100 mK, proving that quantum tunneling plays the main role in these particles at low temperature. Magnetic relaxation has also been studied using the Landau-Zener method making the system crossing zero resonant field at different rates, alpha=dH/dt, ranging from 10^{-5} to 10^{-3} T/s, and at different temperatures, from 150 mK up to the blocking temperature. We propose a new Tln(Delta H_{eff}/tau_0 alpha) scaling law for the Landau-Zener probability in a system distributed in volumes, where Delta H_{eff} is the effective width of the zero field resonance.Comment: 13 pages, 4 postscript figure

    Macrospin approximation and quantum effects in models for magnetization reversal

    Full text link
    The thermal activation of magnetization reversal in magnetic nanoparticles is controlled by the anisotropy-energy barrier. Using perturbation theory, exact diagonalization and stability analysis of the ferromagnetic spin-s Heisenberg model with coupling or single-site anisotropy, we study the effects of quantum fluctuations on the height of the energy barrier. Opposed to the classical case, there is no critical anisotropy strength discriminating between reversal via coherent rotation and via nucleation/domain-wall propagation. Quantum fluctuations are seen to lower the barrier depending on the anisotropy strength, dimensionality and system size and shape. In the weak-anisotropy limit, a macrospin model is shown to emerge as the effective low-energy theory where the microscopic spins are tightly aligned due to the ferromagnetic exchange. The calculation provides explicit expressions for the anisotropy parameter of the effective macrospin. We find a reduction of the anisotropy-energy barrier as compared to the classical high spin-s limit.Comment: 10 pages, 11 figure

    Spin splitting and precession in quantum dots with spin-orbit coupling: the role of spatial deformation

    Get PDF
    Extending a previous work on spin precession in GaAs/AlGaAs quantum dots with spin-orbit coupling, we study the role of deformation in the external confinement. Small elliptical deformations are enough to alter the precessional characteristics at low magnetic fields. We obtain approximate expressions for the modified gg factor including weak Rashba and Dresselhaus spin-orbit terms. For more intense couplings numerical calculations are performed. We also study the influence of the magnetic field orientation on the spin splitting and the related anisotropy of the gg factor. Using realistic spin-orbit strengths our model calculations can reproduce the experimental spin-splittings reported by Hanson et al. (cond-mat/0303139) for a one-electron dot. For dots containing more electrons, Coulomb interaction effects are estimated within the local-spin-density approximation, showing that many features of the non-iteracting system are qualitatively preserved.Comment: 7 pages, 7 figure

    High frequency resonant experiments in Fe8_8 molecular clusters

    Full text link
    Precise resonant experiments on Fe8_{8} magnetic clusters have been conducted down to 1.2 K at various tranverse magnetic fields, using a cylindrical resonator cavity with 40 different frequencies between 37 GHz and 110 GHz. All the observed resonances for both single crystal and oriented powder, have been fitted by the eigenstates of the hamiltonian H=−DSz2+ESx2−gμBH⋅S{\cal H}=-DS_z^2+ES_x^2-g\mu_B{\bf H}\cdot {\bf S}. We have identified the resonances corresponding to the coherent quantum oscillations for different orientations of spin S = 10.Comment: to appear in Phys.Rev. B (August 2000

    Photoconductance Quantization in a Single-Photon Detector

    Get PDF
    We have made a single-photon detector that relies on photoconductive gain in a narrow electron channel in an AlGaAs/GaAs 2-dimensional electron gas. Given that the electron channel is 1-dimensional, the photo-induced conductance has plateaus at multiples of the quantum conductance 2e2^{2}/h. Super-imposed on these broad conductance plateaus are many sharp, small, conductance steps associated with single-photon absorption events that produce individual photo-carriers. This type of photoconductive detector could measure a single photon, while safely storing and protecting the spin degree of freedom of its photo-carrier. This function is valuable for a quantum repeater that would allow very long distance teleportation of quantum information.Comment: 4 pages, 4 figure

    Tight-binding g-Factor Calculations of CdSe Nanostructures

    Full text link
    The Lande g-factors for CdSe quantum dots and rods are investigated within the framework of the semiempirical tight-binding method. We describe methods for treating both the n-doped and neutral nanostructures, and then apply these to a selection of nanocrystals of variable size and shape, focusing on approximately spherical dots and rods of differing aspect ratio. For the negatively charged n-doped systems, we observe that the g-factors for near-spherical CdSe dots are approximately independent of size, but show strong shape dependence as one axis of the quantum dot is extended to form rod-like structures. In particular, there is a discontinuity in the magnitude of g-factor and a transition from anisotropic to isotropic g-factor tensor at aspect ratio ~1.3. For the neutral systems, we analyze the electron g-factor of both the conduction and valence band electrons. We find that the behavior of the electron g-factor in the neutral nanocrystals is generally similar to that in the n-doped case, showing the same strong shape dependence and discontinuity in magnitude and anisotropy. In smaller systems the g-factor value is dependent on the details of the surface model. Comparison with recent measurements of g-factors for CdSe nanocrystals suggests that the shape dependent transition may be responsible for the observations of anomalous numbers of g-factors at certain nanocrystal sizes.Comment: 15 pages, 6 figures. Fixed typos to match published versio

    Tunnel splitting and quantum phase interference in biaxial ferrimagnetic particles at excited states

    Full text link
    The tunneling splitting in biaxial ferrimagnetic particles at excited states with an explicit calculation of the prefactor of exponent is obtained in terms of periodic instantons which are responsible for tunneling at excited states and is shown as a function of magnetic field applied along an arbitrary direction in the plane of hard and medium axes. Using complex time path-integral we demonstrate the oscillation of tunnel splitting with respect to the magnitude and the direction of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings . The oscillation is gradually smeared and in the end the tunnel splitting monotonously increases with the magnitude of the magnetic field when the direction of the magnetic field tends to the medium axis. The oscillation behavior is similar to the recent experimental observation with Fe8_8 molecular clusters. A candidate of possible experiments to observe the effect of quantum phase interference in the ferrimagnetic particles is proposed.Comment: 15 pages, 5 figures, acceptted to be pubblished in Physical Review
    • …
    corecore