16 research outputs found

    Rapid evolution of insecticide resistance and patterns of pesticides usage in agriculture in the city of Yaoundé, Cameroon

    Get PDF
    Background: The practice of agriculture in urban settings contributes to the rapid expansion of insecticide resistance in malaria vectors. However, there is still not enough information on pesticide usage in most urban settings. The present study aims to assess the evolution of Anopheles gambiae (s.l.) population susceptibility to insecticides and patterns of pesticide usage in agriculture in the city of Yaoundé, Cameroon. Methods: WHO susceptibility tests and synergist PBO bioassays were conducted on adult An. gambiae (s.l.) mosquitoes aged 3 to 5 days emerging from larvae collected from the field. Seven insecticides (deltamethrin, permethrin, DDT, bendiocarb, propoxur, fenitrothion and malathion) were evaluated. The presence of target site mutation conferring knockdown (kdr) resistance was investigated using TaqMan assay, and mosquito species were identified using SINE-PCR. Surveys on 81 retailers and 232 farmers were conducted to assess general knowledge and practices regarding agricultural pesticide usage. Results: High resistance intensity to pyrethroids was observed with a high frequency of the kdr allele 1014F and low frequency of the kdr 1014S allele. The level of susceptibility of An. gambiae (s.l.) to pyrethroids and carbamates was found to decrease with time (from > 34% in 2017 to < 23% in 2019 for deltamethrin and permethrin and from 97% in 2017 to < 86% in 2019 for bendiocarb). Both An. gambiae (s.s.) and An. coluzzii were recorded. Over 150 pesticides and fertilizers were sold by retailers for agricultural purposes in the city of Yaoundé. Most farmers do not respect safety practices. Poor practices including extensive and inappropriate application of pesticides as well as poor management of perished pesticides and empty pesticide containers were also documented. Conclusions: The study indicated rapid evolution of insecticide resistance and uncontrolled usage of pesticides by farmers in agriculture. There is an urgent need to address these gaps to improve the management of insecticide resistance

    Performance of the SD Bioline rapid diagnostic test as a good alternative to the detection of human African trypanosomiasis in Cameroon

    Get PDF
    Background: Case detection is essential for the management of human African trypanosomiasis (HAT), which is caused by Trypanosoma brucei gambiense. Prior to parasitological confirmation, routine screening using the card agglutination test for trypanosomiasis (CATT) is essential. Recently, individual rapid diagnostic tests (RDTs) for the serodiagnosis of HAT have been developed. Objective: The purpose of this study was to evaluate the contribution of SD Bioline HAT to the serological screening of human African trypanosomiasis in Cameroonian foci.Methods. Between June 2014 and January 2015, blood samples were collected during surveys in the foci of Campo, Yokadouma, and Fontem. The sensitivity (Se) and specificity (Sp) of SD Bioline HAT were determined using the CATT as the gold standard for the detection of specific antibodies against Trypanosoma brucei gambiense. Results: A total of 88 samples were tested: 59.1% (n=52) in Campo, 31.8% (n=28) in Yokadouma, and 9.1% (n=8) in Fontem. There were 61.4% (n=54) males and 38.4% (n=34) females, and the average age was 35.4 19.0 years. In probed foci, the overall seroprevalence was 11.4% (95% confidence interval: 6.3-19.7) with the CATT method and 18.2% (95% confidence interval: 11.5-27.2%) with the SD Bioline HAT RDT method. The SD Bioline HAT's Se and Sp were 80.0% and 89.7%, respectively. Conclusions: This study demonstrated that the overall performance of the SD Bioline HAT was comparable to that of the CATT, with high specificity in the serological detection of HAT

    Intestinal parasite infections and associated risk factors in inhabitants of the city of Yaoundé, Cameroon

    Get PDF
    Intestinal parasite infections are still prevalent in developing countries and in Cameroon where over 90% of the population is at high risk. To assess the distribution of intestinal parasitic infections and risk factors of the city of Yaoundé, both household and parasitological surveys were conducted from October to December 2019 among inhabitants of lowlands aged from 15 years and over. Stools samples were collected and screened for intestinal parasites presence using Kato Katz and Formol-Ether methods. Sociodemographic status, prevention measures against intestinal parasitic diseases and practices with increase exposition to risky environments were then recorded.&#x0D; A total of 229 participants (142 females: 62.0%; 87 males: 38.0%) were enrolled for the study, and 24.02% (55/229) were found infected by helminthes (ten species) and/or protozoans (one species). Participant infection rates and risk varied by parasite species and socio-demographic factors. Global risk analysis showed that age (OR ranges: 3.78-15.96), anti-parasitic drug consumption (OR: 2.53), eating behavior,,hygiene (OR: 22.4), occupation (OR ranges: 1.92-3.53) and type of toilets (OR: 3.4) were strongly associated with risk of infection by intestinal parasites. The risk increased in 15-30 years age group for A. lumbricoïdes, T. trichiura and Schistosoma mansoni, unpredictably in those washing their hands before meals for A. lumbricoïdes and H. nana, in respondents using antiparasitic drugs as auto-medication for H. nana and in those using traditional toilets for A. lumbricoïdes. However, other variables with high OR values (&gt; 5.0) might be potential risk factor for the occurrence of specific parasite infections. The study suggests the need for household sensitization and community actions including integrated environmental management as complement strategy to reduce intestinal parasite transmission in the city of Yaoundé

    Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation.

    Get PDF
    BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design

    Spatial and temporal development of deltamethrin resistance in malaria vectors of the Anopheles gambiae complex from North Cameroon

    Get PDF
    The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization’s (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70–85% to 49–73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91–97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0–30% in 2011 to 18–61% in 2014–2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon

    Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon

    Get PDF
    Background: Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. Methods: Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. Results: Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance phenotypes, suggesting that the kdr mechanism may act with certain cofactors to be identified. Conclusion: These results demonstrate the ongoing spread of kdr alleles in An. gambiae in Central Africa. The rapid evolution of insecticide resistance in this highly dynamic and genetically polymorphic species remains a challenge for its control

    Tsetse Flies Infected with Trypanosomes in Three Active Human African Trypanosomiasis Foci of the Republic of Congo

    No full text
    Introduction: Human African trypanosomiasis (HAT) is a neglected tropical disease still endemic in the Republic of Congo. Despite the continuous detection of HAT cases in the country, there is still not enough data on trypanosome infections in tsetse flies, trypanosome species and tsetse flies&rsquo; species distribution in endemic foci. The present study was intended to fill this gap and improve understanding of trypanosome circulation in three active foci in the centre and south of Congo. Methods: Pyramid traps were set in various places in villages to collect tsetse flies both during the rainy and dry seasons. Once collected, tsetse flies were identified using morphological keys. DNA extracted from flies was processed by PCR for species identification and for detection of trypanosome presence. A second PCR was run for different trypanosome species identification. Results: A total of 1291 tsetse flies were collected. The average apparent density of flies per day was 0.043 in Mpouya, 0.73 in Ngab&eacute; and 2.79 in Loudima. Glossina fuscipes quazensis was the predominant tsetse fly collected in Ngab&eacute; and Mpouya, while Glossina palpalis palpalis was the only tsetse fly found in Loudima. A total of 224 (17.7%) flies were detected infected by trypanosomes; 100 (7.91%) by Trypanosoma congolense savannah, 22 (1.74%) by Trypanosoma congolense forest, 15 (1.19%) by Trypanosoma vivax, 83 (6.56%) by Trypanosoma brucei (s.l.) and 2 (0.16%) undetermined species. No T Trypanosoma brucei gambiense was found. A total of 57 co-infections between T. brucei (s.l.) and T. congolense savannah or T. brucei (s.l.) and T. congolense forest were found only in G. p. palpalis. Loudima recorded the highest number of infected tsetse flies. Conclusion: The study provided updated information on the distribution of tsetse fly populations as well as on Trypanosoma species circulating in tsetse flies in the different active HAT foci in Congo. These data suggested a high risk of potential transmission of animal trypanosomes in these foci, thus stressing the need for active surveillance in this endemic area

    Population Knowledge and Practices and the Prevalence of Trypanosomes Circulating in Domestic Animals in Three Active Human African Trypanosomiasis Foci in the Republic of Congo

    No full text
    Human African Trypanosomiasis (HAT) is still endemic in the Republic of Congo. Although the incidence of cases has significantly decreased over years, the disease still persists in some active foci. Factors contributing to the maintenance of the disease such as the existence of an animal reservoir or population knowledge are still not well known. It is in this context that a study focusing on the knowledge and practices of the population with regard to HAT as well as on the prevalence of trypanosomes infecting animals was undertaken in three active HAT foci in the Republic of Congo. The study was performed using field surveys conducted from November 2019 to June 2021. Domestic animal blood was examined by microscopy and PCR to detect the presence of trypanosomes. A structured questionnaire was administered to the population to assess their knowledge and practices concerning HAT in these endemic foci. More than half of the animals examined were found to be infected with trypanosomes (51.22%). The main trypanosome species infecting animals were Trypanosoma congolense savannah (67.2%) and Trypanosoma brucei (s.l.) (32.8%). No trypanosomes infecting humans were detected. Concerning household surveys, more than half of the respondents (52.9%) were fully aware of the mode of transmission and symptoms of the disease. The majority of people preferred to wear clothes covering the whole body and to use locally made soap as repellents to protect themselves from tsetse fly bites. This study suggests frequent circulation of animal trypanosomes in domestic animals and the use of personal measures to protect against tsetse fly bites. Updating information on the HAT animal reservoir and population knowledge alongside regular monitoring of the tsetse fly populations and the use of traps to control tsetse flies are crucial to drive efforts towards the elimination of gHAT in the Republic of Congo
    corecore