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Abstract 

Background:  The practice of agriculture in urban settings contributes to the rapid expansion of insecticide resist‑
ance in malaria vectors. However, there is still not enough information on pesticide usage in most urban settings. The 
present study aims to assess the evolution of Anopheles gambiae (s.l.) population susceptibility to insecticides and 
patterns of pesticide usage in agriculture in the city of Yaoundé, Cameroon.

Methods:  WHO susceptibility tests and synergist PBO bioassays were conducted on adult An. gambiae (s.l.) mosqui‑
toes aged 3 to 5 days emerging from larvae collected from the field. Seven insecticides (deltamethrin, permethrin, 
DDT, bendiocarb, propoxur, fenitrothion and malathion) were evaluated. The presence of target site mutation confer‑
ring knockdown (kdr) resistance was investigated using TaqMan assay, and mosquito species were identified using 
SINE-PCR. Surveys on 81 retailers and 232 farmers were conducted to assess general knowledge and practices regard‑
ing agricultural pesticide usage.

Results:  High resistance intensity to pyrethroids was observed with a high frequency of the kdr allele 1014F and low 
frequency of the kdr 1014S allele. The level of susceptibility of An. gambiae (s.l.) to pyrethroids and carbamates was 
found to decrease with time (from > 34% in 2017 to < 23% in 2019 for deltamethrin and permethrin and from 97% in 
2017 to < 86% in 2019 for bendiocarb). Both An. gambiae (s.s.) and An. coluzzii were recorded. Over 150 pesticides and 
fertilizers were sold by retailers for agricultural purposes in the city of Yaoundé. Most farmers do not respect safety 
practices. Poor practices including extensive and inappropriate application of pesticides as well as poor management 
of perished pesticides and empty pesticide containers were also documented.

Conclusions:  The study indicated rapid evolution of insecticide resistance and uncontrolled usage of pesticides 
by farmers in agriculture. There is an urgent need to address these gaps to improve the management of insecticide 
resistance.
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Background
Despite progress in malaria control registered during 
the last decade, following the large-scale deployment 
of insecticide-based interventions such as long-lasting 
insecticidal nets (LLINs) and indoor residual spraying 
(IRS) [1, 2], malaria remains an important public health 
problem in Africa [3, 4]. In Cameroon, malaria is still a 

Open Access

Parasites & Vectors

*Correspondence:  nadou_chiana33@yahoo.fr; antonio_nk@yahoo.fr

1 Organisation de Coordination pour la lutte Contre les Endémies en Afrique 
Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, 
Yaoundé, Cameroon
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-022-05321-8&domain=pdf


Page 2 of 15Sonhafouo‑Chiana et al. Parasites & Vectors          (2022) 15:186 

major threat. Prevention strategies rely mainly on the 
use of LLINs. Over 35 million LLINs have been distrib-
uted across the country so far. It is estimated that over 
70% of households own at least a net and that 58% of the 
population uses nets regularly [5, 6]. However, the sus-
tainability of these insecticide-based control interven-
tions is challenged by the spread of insecticide resistance 
in main malaria vectors [7–9]. Studies conducted across 
the country reported increased expansion of insecticide 
resistance in the major malaria vectors An. gambiae (s.l.) 
and An. funestus [7, 10–13].

Pesticides used in agriculture are considered to largely 
contribute to the selection and spread of insecticide 
resistance in An. gambiae (s.l.) [10, 14–18]. Mosquitoes 
are now becoming increasingly tolerant to several com-
pounds including pyrethroids, organochlorines, carba-
mates and organophosphates.

Pyrethroids are the only insecticides approved by 
WHO for impregnating mosquito nets [19] because of 
their low toxicity to humans and other mammals, quick 
knockdown effect and cost-effectiveness [20, 21]. The 
other insecticides (organophosphates, carbamates and 
organochlorines) are mainly used for indoor residual 
spraying [19]. One of the mechanisms involved in pyre-
throid resistance in An. gambiae (s.l.) is target-site 
insensitivity, also known as knockdown resistance (kdr), 
induced by two different mutations occurring at position 
1014 on the voltage-gated sodium channel gene (VGSC). 
The first mutation leads to a leucine-to-phenylalanine 
substitution and is widely distributed in West Africa 
[22], whereas the second leads to a leucine-to-serine sub-
stitution and is largely expanded in East Africa [23]. In 
addition to target site mechanisms, resistance could also 
occur through overexpression of detoxification enzymes. 
The overexpression of P450 genes has been found associ-
ated with resistance to organochlorines, pyrethroids and 
carbamates [11, 24–26]. Overexpression of glutathione-
S transferase genes, notably the GSTe2 gene, is associ-
ated with DDT resistance [27]. GSTs are more active in 
An. funestus and have been associated to many cases of 
resistance to both pyrethroids and carbamates [12, 28]. 
The current evolution of insecticide resistance in vector 
population calls for urgent actions to improve control.

Selections by insecticide use in public health and agri-
culture are all considered to drive the rapid expansion of 
insecticide resistance in malaria vectors [29]. However, so 
far there have been few investigations on pesticide usage 
in relation with insecticide resistance expansion [30]. The 
last decade has shown increasing demand for pesticides 
with countries such as China, the USA and Argentina 
accounting for 70% of global pesticides used in agricul-
ture (2.44 billion kg of active ingredient annually) [31]. 
Cameroon is one of the 13 countries which consume 

between 10 to 50 million kg of pesticides in agriculture. 
The utilization of pesticides in Cameroon has increased 
eightfold during the last decade, and the current increase 
is in line with the extension of agricultural land surfaces 
[31]. It is possible that the quantity of pesticides used 
could be underestimated since many pesticides and fer-
tilizers used in the country elude controls at the borders 
[32–34]. Although there are effective laws guiding pesti-
cide and fertilizer supply, selling and utilization, this reg-
ulation is not always applied [35, 36]. A large variety of 
pesticides are sold in local markets or on the street. These 
pesticides of unknown quality could expose the popula-
tion to hazards and affect pest and vector-borne disease 
control [37–40]. In the present study, an assessment of 
the evolution of insecticide resistance in vector popula-
tions was conducted alongside a survey on pesticides 
sold and used by farmers in the city of Yaoundé.

Methods
Sampling site and mosquito collection
Mosquito larval collections were conducted in 32 dis-
tricts of Yaoundé (Fig.  1), the capital city of Cameroon 
(3˚52′N; 11˚31′E). Yaoundé is situated within the Congo-
Guinean phytogeographic domain and has an equato-
rial climate consisting of four seasons: two rainy seasons 
(March–June and September–November; annual rainfall 
1700 mm) and two dry seasons (December–February and 
July–August). Yaoundé’s landscape comprises high and 
low land areas. Low land areas include large swamps, 
lakes and rivers and are frequently exploited for market 
gardening. The practice of market gardening has now 
largely expanded in the city centre particularly along the 
edges of rivers. More than ten rivers cross the city, the 
most important being Mfoundi, Mefou and Biyeme Riv-
ers. The periphery of vast Yaoundé zones has been defor-
ested, and these areas are exploited for agriculture. Crops 
cultivated by inhabitants include maize, vegetables, 
groundnuts and beans. About 10% of the city population 
practices agriculture on different scales.

Larval collections and mosquito rearing
The immature stages of An. gambiae (s.l.) were col-
lected using the standard dipping technique [41]. The 
latter consists of collecting mosquito larvae from the 
surface of the breeding sites using a ladle. Larval col-
lections were conducted in standing water collections 
present in cultivated agricultural areas and different 
places across the city. Water collections were some-
times clean or full of organic matter. These water col-
lections were mainly found in lowland areas or close to 
swamps. After collection, larvae were kept in labelled 
jars according to surveyed sites and then transported to 
the insectary at OCEAC (Organization of Coordination 
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Fig. 1  A map of the city of Yaoundé showing the distribution of larval collection sites [the map of Yaoundé is available in open access on the 
OpenStreetMap platform (https://​www.​opens​treet​map.​org/​search?​query=​camer​oon#​map=6/​7.​406/​12.​283)]

https://www.openstreetmap.org/search?query=cameroon#map=6/7.406/12.283
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of the Fight against Endemic Diseases in Central Africa) 
for rearing. Larvae were raised under standard temper-
ature (27  °C ± 2) and humidity (65% ± 10) conditions 
until the adult stage. Adult anophelines were identified 
to the species level using morphological identification 
keys [42, 43].

Insecticide susceptibility bioassays
Bioassays were carried out using the standard WHO pro-
tocol [44]. Tests were performed with WHO-supplied 
insecticide-impregnated papers. Insecticides tested 
included two pyrethroids at different doses (0.05% del-
tamethrin, 0.25% deltamethrin, 0.5% deltamethrin; 0.75% 
permethrin, 3.75% permethrin and 7.5% permethrin), 
one organochlorine (4% DDT), two carbamates (0.1% 
bendiocarb and 0.1% propoxur) and two organophos-
phates (1% fenitrothion and 5% malathion). Three- to 
5-day-old unfed female An. gambiae (s.l.) collected at the 
larval stage and reared until adult stage were exposed for 
1  h to these insecticides. Mosquitoes were divided into 
batches of 25 individuals before being exposed to insecti-
cide-treated papers for 1 h. Experiments were conducted 
at a temperature of 22 to 26 °C with a minimum of four 
replicates per bioassay, and the mortality rates were 
recorded after 24  h. The insecticide-susceptible strains 
of An. gambiae (s.l.) (Kisumu and Ngousso strains) were 
used as control to assess the quality of the impregnated 
papers. For control tests, silicone-treated papers were 
used. The result of the insecticide susceptibility test was 
valid if mortality in the control group was < 5% and dis-
carded if the mortality in the control was > 20%. When 
the mortality rate was between 5 and 20%, the mortality 
rate was corrected using Abbott’s formula [45]. For each 
insecticide, dead mosquitoes were kept separately in 1.5-
ml microtubes containing silica gel, whereas mosquitoes 
still alive after the tests and control samples were kept 
separately in RNAlater tubes for molecular analysis.

Synergist bioassay with piperonyl butoxide (PBO)
Following the high level of resistance recorded against 
0.75% permethrin and 0.05% deltamethrin, the effect of 
the synergist PBO in combination with these insecticides 
was tested to assess the potential contribution of P450 
monooxygenase enzymes. Subsamples of 20 to 25 unfed, 
3–5-day-old adult females of An. gambiae (s.l.) randomly 
collected from a cage were pre-exposed to 4% PBO paper 
for 1 h before being immediately exposed to 0.75% per-
methrin or 0.05% deltamethrin for an additional 1 h. 
Mortality following exposure to both PBO and perme-
thrin or deltamethrin was recorded after 24 h. Suscepti-
bility tests were conducted alongside controls.

DNA extraction, species identification and detection of kdr 
mutations
Sub-samples of surviving female mosquitoes (alive after 
24  h exposure), dead and control mosquitoes were ran-
domly selected for molecular analysis. The Livak method 
[46] was used to extract genomic DNA from single mos-
quitoes. Mosquito identification to the species level was 
carried out using SINE200 PCR for An. gambiae (s.l.) 
[47]. Target site mutations (L1014F and L1014S) in the 
voltage-gated sodium channel gene of An. gambiae (s.l.) 
mosquitoes were genotyped using TaqMan assay proto-
col, previously described by Bass et al. [48].

Knowledge, Attitudes and Practices (KAP) surveys 
of agrochemical vendors and farmers
KAP surveys of agrochemical vendors and farmers in the 
city of Yaoundé were conducted using a semi-structured 
questionnaire (Additional file 1: Table S1). The question-
naire was divided into three sections. The first section 
collected socio-demographic information on vendors and 
farmers (age, sex, education level). The second section, 
designed for the vendors, collected information on pes-
ticides sold, origin of pesticides and interaction between 
vendors and the end-users. The third part, designed for 
the farmers, explored the usage of pesticides by farmers, 
type of pesticide used, frequency of pesticide usage, type 
of crops cultivated, size of the land cultivated, knowledge 
of pesticide used, respect of standard dosage, frequency 
of application and respect of safety measures (protection 
measures, manipulation of pesticides, management of 
empty containers, expired pesticides).

Statistical analysis
Results of WHO susceptibility bioassays and syner-
gist were recorded in Microsoft Excel files and analysed 
according to WHO criteria [44]. A mosquito population 
was considered susceptible if the mortality rate was ≥ 
98%; when the mortality rate was between 90 and 97% 
the population was considered possibly resistant but this 
needed to be checked; when the mortality rate was < 90% 
the population was considered fully resistant. A test was 
deemed valid if mortality in the control group was < 5% 
and discarded if the mortality in the control was > 20% 
[44]. When the mortality rate of control was between 5 
and 20%, the mortality rate of mosquitoes exposed was 
corrected using Abbott’s formula [45]. The presence of 
kdr alleles was detected using TaqMan qPCR according 
to Bass et al. [48]. The kdr allele frequency was calculated 
as follows: f(R) = (2 × RR + RS)/2  N and f(S) = 1−f(R), 
with RR = total number of homozygote resistant, 
RS = total number of heterozygote resistant and N = total 
number of mosquitoes successfully screened for the kdr 
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mutation. Mosquito populations were checked to deter-
mine whether they were in Hardy-Weinberg equilibrium. 
Data generated through the KAP surveys were analysed 
in Microsoft Excel. Data cleaning was performed to 
check for inconsistencies in data entry and responses. 
Data were analysed using SPSS version 20 statistical soft-
ware package. Means, frequencies and proportions were 
used for descriptive analysis of the data. Percentages were 
compared using chi-squared test. Comparison between 
means was assessed using ANOVA. The 95% confidence 
interval (95% CI) was computed using MedCalc v14.8.1 
software. Statistical significance was set at P < 0.05.

Results
Species identification
Anopheles gambiae (s.l.) samples were composed of two 
species: An. coluzzii and An. gambiae (s.s.). Anopheles 

coluzzii was the most abundant species (Table  1). No 
major changes in the composition of the anopheline 
fauna was observed during the 3  years of monitoring 
(P ˃ 0.2).

Insecticide resistance profile
A total of 11,894 female An. gambiae (s.l.) mosquitoes 
obtained from larvae and pupae collected in 34 districts 
in the city of Yaoundé were tested to assess their suscep-
tibility profile to seven insecticides (Fig. 2). Females were 
chosen because they are the ones transmitting malaria 
and coming into contact with humans. Mortality rates 
to deltamethrin varied from 35.2 ± 2.7%, 12.3 ± 1.6% 
and 22.4 ± 3.9%, respectively, for 2017, 2018 and 2019 
(Fig. 2a). Mortality to permethrin, significantly decreased 
with time from 34.2 ± 4.2% in 2017, 7.7 ± 2.5% in 2018 
to 2.1 ± 1.3% in 2019. For the organochlorine DDT, 

Table 1  Distribution of species of An. gambiae (s.l.) complex during surveys in the city of Yaoundé

n number of specimens identified to the species level, N total number of specimens processed, 95% CI 95% confidence interval

Species Years

2017 2018 2019

n/N % [95% CI] n/N % [95% CI] n/N % [95% CI]

An. coluzzii 47/52 90.4% [82; 98.8] 293/331 88.52% [84.9; 92.2] 240/254 94.5% [91.6; 97.4]

An. gambiae (s.s.) 5/52 9.6% [− 16.2; 35.5] 38/331 11.48% [1.3; 21.6] 14/254 5.5% [− 6.4; 17.5]

Fig. 2  Evolution of Anopheles gambiae (s.l.) resistance to pyrethroids (a 0.75% permethrin and 0.05% deltamethrin); organophosphates (b 1% 
fenitrothion and 5% malathion); carbamates (c 0.1% bendiocarb and 0.1% propoxur); organochlorine (d 4% DDT) insecticides in the city of Yaoundé. 
The error bars represent 95% confidence interval (CI)
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mortality rates were 1.3 ± 1.8%, 3.1 ± 1% and 1.5 ± 1.3% 
in 2017, 2018 and 2019, respectively (Fig. 2d).

The average mortality rates to bendiocarb varied from 
96.4 ± 1.4% in 2017, 90.1 ± 1.7% in 2018 and 85.7 ± 4.1% 
in 2019 (c). Mortality rate to propoxur was 52.3 ± 7.9% in 
2018 and 3.3 ± 3.2% in 2019.

Mortality rates to the organophosphates fenitrothion 
and malathion were always > 98% in both 2018 and 2019 
(b).

Insecticide resistance intensity to permethrin 
and deltamethrin
The mortality rate of An. gambiae (s.l.) was found to 
increase with the concentration of deltamethrin and per-
methrin (Fig.  3). For deltamethrin and permethrin 5×, 
the mortality rate varied respectively from 71.7 ± 2.9% 
and 59.9 ± 6.1% in 2018 to 80 ± 8.8% in 2019. In the case 
of deltamethrin 10×, the mortality rate varied from 
84.6 ± 5.2% in 2018 to 95 ± 4.3% in 2019. For permethrin 
10×, the mortality rate varied from 82.8 ± 4.7% in 2018 to 
88.8 ± 6.9% in 2019.

Tests with PBO as synergist
Pre-exposure of An. gambiae (s.l.) populations to 4% 
PBO synergist significantly increased the insecticidal 
activity of both deltamethrin and permethrin. Mortal-
ity shifted from 12.3 ± 1.6% for deltamethrin alone to 
67.6 ± 5.8% for deltamethrin + PBO in 2018 and from 
22.4 ± 3.9% for deltamethrin alone to 71.3 ± 9.9% mortal-
ity after pre-exposure to PBO in 2019 (Fig. 4). Similarly, 
mortality shifted from 7.7 ± 2.5% for permethrin alone 
to 27.8 ± 5.7% for permethrin + PBO in 2018 and from 
2.1 ± 1.3% for permethrin alone to 33 ± 9.7% mortality 
after pre-exposure to PBO in 2019 (Fig. 4).

L1014F kdr detection in An. gambiae (s.s.) and An. coluzzii
A total of 801 samples were genotyped between 2017 and 
2019 to assess the presence of L1014F kdr allele. Of these 
samples, 43.8% (351/801) were homozygote resistant RR, 
53.3% (n = 427/801) were heterozygote RS, and only 2.9% 
(n = 23/801) were homozygote susceptible SS. The fre-
quency of the resistant allele 1014F was high and varied 
from 0.6 to 0.8 (Table 2). None of the samples collected in 
2017, 2018 and 2019 appeared to be in Hardy-Weinberg 
equilibrium (P < 0.001).

L1014S kdr detection in An. gambiae (s.s.) and An. coluzzii
Out of 525 samples genotyped, 2.3% (n = 12/525) were 
heterozygote RS; no homozygote resistant RR was found. 
The frequency of the resistant allele 1014S was 0.01 in 
2017 and 2018. The allele was not present in 2019 sam-
ples (Table 3).

Socio‑demographic characteristics of pesticide vendors
A total of 81 agrochemical shops were visited in 10 dif-
ferent markets of the city of Yaoundé Nfoundi (n = 26), 
Mokolo (n = 12), Vogt Mbi (n = 8), Kouabang (n = 7), 
Ekounou (n = 6), Mendong (n = 5), Vogt Ada (n = 5), 
Etoudi (n = 5), Essos (n = 4) and Acacias (n = 3). General 
information on the respondents is outlined in Table  4. 
Most of the sellers [39.5% (n = 32/81)] were between 31 
and 40 years old. The majority of pesticide vendors had 
the secondary education level [42% (n = 34/81)]. Some 
had attended the university [39.5% (n = 32/81)]; some 
had never attended school [16.1% (n = 13/81)].

Pesticides sold on the market
The agricultural pesticides found on the market in 
Yaoundé included: insecticides, fungicides, herbicides, 
nematicides and acaricides (Additional file  2: Table  S2). 

Fig. 3  Resistance intensity to permethrin and deltamethrin of An. 
gambiae (s.l.) from the city of Yaoundé. (1× deltamethrin = 0.05% 
deltamethrin; 1× permethrin = 0.75% permethrin; 5× 
deltamethrin = 0.25% deltamethrin; 5× permethrin = 3.75% 
permethrin; 10× deltamethrin = 0.5% deltamethrin; 10× 
permethrin = 7.5% permethrin). The error bars represent 95% 
confidence interval (CI)

Fig. 4  Evolution of pyrethroid resistance in An. gambiae (s.l.) when 
pre-exposed to PBO in 2018 and 2019. (Delta, deltamethrin; PBO, 
piperonyl butoxide; Perm, permethrin). The error bars represent 95% 
confidence interval (CI)
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These compounds were used for different purposes: 
plant protection against pests, home weeding and indoor 
spraying. Pesticides were sold alongside fertilizers.

Active ingredients, chemical classes and application doses
Different classes of compounds including pyrethroids, 
organophosphates, organochlorines, carbamates, nicotinoids 
and neonicotinoids were commonly found in pesticides 

sold on the market (Additional file  2: Table  S2). Details 
on the composition, active ingredient, dilution and appli-
cation dose were always provided. Almost all pesticides 
had broad-spectrum activity and acted by killing pests 
either after ingestion or through direct contact or inha-
lation. Most pesticides were multi-site inhibitors affect-
ing various enzymes and metabolic processes in pests. 
Many pesticides contained a mixture of two active 
ingredients at different doses. Active ingredients com-
monly found in each insecticide family were: pyrethroids 
(e.g. deltamethrin, cypermethrin, lambda-cyhalothrin, 
bifenthrin) or organophosphates (e.g. chlorpyrifos, 
chlorpyrifos-thyl, pirimiphos methyl), carbamates (e.g. 
mancozeb, oxamyl, maneb), organochlorines (e.g. chlo-
rothalonil), neonicotinoids (e.g. imidacloprid) and nicoti-
noids (e.g. acetamiprid). Other active ingredients included f 
ungicides (e.g. mancozeb, metalaxyl-M, dimethomorph, 
chlorothalonil, mefenoxam, cuprous oxide, carbendazim, 
cymoxanil). Glyphosate, paraquat, nicosulfuron, 2,4-D 
amine salt, fluroxypy, triclopyr butoxyethyl ester and tri-
clopyr acid equivalent were the main herbicides recorded 
and oxamyl and abamectin the main nematicide. Insecti-
cide formulations commonly found on the market were 
emulsifiable concentrate (EC) and suspension concen-
trate (SC). Most herbicides and fungicides were formu-
lated as soluble concentrate (SL) and wettable powders 
(WP), respectively.

WHO toxicity classification
Most of the insecticides found during the study (Addi-
tional file  2: Table  S2) belonged to  WHO Class II 
(moderately toxic or hazardous or dangerous); others 
were slightly hazardous insecticides (WHO Class III) 
and nocif or harmful (Class Xn). Most fungicides were 
classified as slightly hazardous (WHO Class III). Most 
herbicides were slightly hazardous insecticides (WHO 
Class III) and unlikely dangerous in normal use 
(WHO Class U). Highly hazardous pesticides (WHO 
Class Ib) were found in herbicides (Additional file  2: 
Table S2).

Table 2  Evolution of kdr allele L1014F genotypes and allele frequencies in An. gambiae (s.l.) populations from the city of Yaoundé

S wild type, R 1014F, SS susceptible homozygote, RR resistant homozygote, RS resistant heterozygote, F(R) frequency of the Kdr L1014F allele, n number of specimens 
with kdr allele, N total number of specimens processed, 95% CI 95% confidence interval

Years Genotypes Alleles

RR RS SS

n/N % [95% CI] n/N % [95% CI] n/N % [95% CI] f(R)

2017 15/68 22.1% [21.9; 22.3] 51/68 75% [74.9; 75.1] 2/68 2.9% [2.7; 3.2] 0.6

2018 221/426 51.9% [51.9; 52] 193/426 45.3% [45.2; 45.4] 12/426 2.8% [2.7; 2.9] 0.8

2019 115/307 37.5% [37.4; 37.6] 183/307 59.6% [59.5; 59.7] 9/307 2.9% [2.8; 3] 0.7

Table 3  Evolution of kdr allele L1014S genotypes and 
frequencies in An. gambiae (s.l.) populations in the city of 
Yaoundé

S wild type, R 1014S, SS susceptible homozygote, RR resistant homozygote, RS 
resistant heterozygote, F(R) frequency of the Kdr L1014S allele, n number of 
specimens with kdr allele, N total number of specimens processed 95% CI 95% 
confidence interval

Years Genotypes Alleles

RS SS

n/N % [95% CI] n/N % [95% CI] f(R)

2017 2/68 2.9% [− 20.5; 
26.4]

66/68 97.06% [93; 101.1] 0.01

2018 10/341 2.9% [− 7.5; 13.4] 331/341 97.07% [95.3; 
98.9]

0.01

2019 0/116 0% 116/116 100% 0

Table 4  Socio-demographic characteristics of pesticides sellers

Variable Category Percentage (n)

Gender Males 48.2% (42)

Females 51.9% (39)

Age (years)  ≤ 30 16.1% (13)

31–40 39.5% (32)

41–50 23.5% (19)

 > 50 13.6% (11)

No answer 7.4% (6)

Education level Primary school 2.5% (2)

Secondary school 42% (34)

University 39.5% (32)

Illiterate 16.1% (13)
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Pesticides sold and sources
Insecticides were the most common pesticide (48%, 
n = 72/150), followed by fungicides (26%, n = 39/150) and 
herbicides (23.3%, n = 35/150) (Additional file 2: Table S2 
and Table  5). Nematicides and acaricides accounted for 
2.7% (n = 4/150). Most products originated from Asia 
(86.7%, n = 130/150). The remaining products (13.3%, 
n = 20/150) originated from Europe, America and Africa. 
Pesticides sold were mainly used in agriculture (96.7%, 
n = 145/150) while just a few (3.3%, n = 5/150) were 
used for indoor spraying. The demand for pesticides was 
high (93.8%, n = 76/81) between March and June during 
the short rainy season at the beginning of agricultural 
activities.

Pesticide usage and safe practices
All pesticide retailers (100%, n = 81/81) reported regu-
larly advising their customers on the safe usage of pes-
ticides (Table  5). Advice provided concerned the choice 
of the product (70.4%, n = 57/81) (based on the type of 
crops which could be sprayed and pest or crop diseases 
targeted by the compound), how to prepare the doses 
for field application (28.4%, n = 23/81) and personal 

protection measures (1.2%, n = 1/81). Most retailers 
(80.3%, n = 65/81) reported that pesticides and fertilizers 
often perished in their shops. Many reported not selling 
those stocks but returning them to their suppliers (60%, 
n = 39/65). Some admitted selling them (6.2%, n = 4/65), 
using them in the field (26.2%, n = 17/65) or throwing 
them in the trash (7.7%, n = 5/65)].

Socio‑demographic characteristics and socio‑economic 
status of farmers interviewed during the survey
The socio-economic and demographic profile of the 232 
farmers who participated in the survey is summarized in 
Table 6. Most of the farmers were male [58.6% (n = 136)]. 
The age range of farmers varied from 20 to > 50  years. 
Concerning their level of education, 22% (n = 51/232) 
had primary school level, 39.2% (n = 91/232) secondary, 
34.9% (n = 81/232) university level and 3.9% (9/232) no 
formal education. Most farmers interviewed practiced 
farming as a part-time activity (79.3%, n = 184/232), 
whereas for 20.7% (n = 48/232) of the respondents it was 
their main activity.

Table 5  Different selling practices reported by pesticide vendors during the survey

Variable Answer Percentage response (n)

Type of pesticide sold Insecticides 48% (72)

Fungicides 26% (39)

Herbicides 23.3% (35)

Nematicides and acaricides 2.7% (4)

Origin of pesticides sold Asia 86.7% (130)

Europe 8.7% (13)

Africa 2.7% (4)

America 2% (3)

Usage of pesticides and fertilizers Agriculture 96.7% (145)

Indoor spraying 3.3% (5)

Purchasing period March–June (rainy season) 93.8% (76)

July–August (dry season) 1.2% (1)

September–October (rainy season) 3.7% (3)

November–February (dry season) 1.2% (1)

Do you advise customers? Yes, regularly 100% (81)

No 0% (0)

Advise provided to customers Choice of product 70.4% (57)

Dosage 28.4% (23)

Personal protection 1.2% (1)

Do pesticides and fertilizers often perish? Yes 80.6% (65)

No 19.8% (16)

What do you do with expired pesticides and fertilizers? Return to suppliers 60% (39)

Used on the field 26.2% (17)

Sell them 6.2% (4)

Throw them in the trash 7.7% (5)
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Sites surveyed
Farmers working in different neighbourhoods of the city 
of Yaoundé were visited; the areas included: Ekounou 
ekie, Ahala, Mendong, Nsimeyon, Etoug-ebe, Mokolo, 
Nkolondom, Ekounou palais, Efoulan, Nsimbock and 
Nkolbisson. Crops cultivated in the different areas 
included vegetables, tomatoes, fruit trees, celery, parsley, 
basil, lettuce, eggplant, leek, chili, cabbage, okra, maize, 
mint, melon, water melon, cucumber, marzipan, banana, 
plantain, groundnut, pepper, peanuts, cereals, potatoes, 
sugar cane, beans, citrus, avocado, cassava and papaya. 
Pests reported to affect production included a wide range 
insects (beetles, grasshoppers, flies, ants, bugs, crickets, 
locusts), scales, worms, biters, suckers, crushers, fun-
gal infections, black pod disease, thrips, caterpillars and 
aphids.

Knowledge on pesticide use
Of the 232 farmers interviewed, 87.5% (n = 203/232) 
were small-scale farmers with < 2000  m2 land exploited 
(Table 7). Farmers exploiting land size of 2000 m2 to 1 ha 
represented 11.2% (n = 26/232) and farmers exploit-
ing land surface > 1  ha were only 1.3% (n = 3/232). 
Almost all farmers [91% (n = 211/232)] reported using 
both pesticides and fertilizers. Only 9.1% (n = 21/232) 
of the farmers reported not using pesticides simply 
because of lack of financial means. Among pesticides, 
those most commonly applied on crops were insecti-
cides. Insecticides were mostly used in combination 
with other compounds such as fungicides, nematicides, 
acaricides and herbicides. The proportion of farmers 

using mixtures of insecticides + fungicides represented 
49.8% (n = 105/211). The proportion mixing insec-
ticides + fungicides + nematicides + acaricides was 
33.65% (n = 71/211); those mixing insecticides + fun-
gicides + herbicides was 2.4% (n = 5/211). Those using 
insecticides alone represented 14.2% (n = 30/211).

Knowledge on pesticide usage and safety practices
From the study, it appeared that farmers normally use 
far more than the recommended dosage of various pesti-
cides and fertilizers (Table 7). Almost all farmers (95.8%, 
n = 202/211) admitted  not respecting the recommended 
dosages. Most farmers (80.1%, n = 169/211) said they 
took advice from retailers before using pesticides and 
fertilizers. Some farmers (15.2%, n = 32/211) reported 
to have been trained in how to grow crops and use pes-
ticides while 4.7% (n = 10/211) farmers reported using 
instructions on labels. Concerning pesticide dilution and 
the indicated rate of application, most farmers (51.2%, 
n = 108/211) said they took advice from pesticide vendors 
or family members, friends, neighbours or other farmers. 
Some (31.8%, n = 67/211) reported reading the instruc-
tions on labels, 10% (n = 21/211) stated that they deter-
mined the dosage by themselves and 7.1% (n = 15/211) 
stated that they attended training workshops.

Frequency of pesticide usage and handling
Pesticides, fertilizers and treatments are applied at dif-
ferent times during crop growing (Table 7). Most farm-
ers reported using pesticides in all seasons (76.8%, 
n = 162/211). Some indicated applying pesticides only 
during the dry season (23.2%, n = 49/211). The spray-
ing device used by farmers was a sprayer. Pesticides 
were always sprayed in combination with fertilizers. 
The dose of pesticides sprayed depended on the fre-
quencies of spraying, type of crop cultivated, land size, 
severity of infection and income status. Usually, pesti-
cides were applied several times, up to six times (82.5%, 
n = 174/211), during plant growth. Most farmers (93.4%, 
n = 197/211) reported high efficacy of pesticides when 
applied several times.

Management of empty pesticide containers and expired 
pesticides
Empty pesticide containers and sachets were dis-
carded indiscriminately after pesticide application 
(36%, n = 76/211). Some farmers discarded the empty 
containers in the trash (31.3%, n = 66/211), some 
burnt the containers (14.2%, n = 30/211), some bur-
ied them (7.6%, n = 16/211), and some recycled them 
for other purposes (10.9%, n = 23/211). A total of 27% 
(n = 57/211) of farmers reported that pesticides and 
fertilizers used often perished. Among those having 

Table 6  Socio-demographic characteristics of farmers involved 
in the survey

Variable Category Percentage (n)

Gender Males 58.6% (136)

Females 41.4% (96)

Age (years) 20 4.7% (11)

21–30 16.8% (39)

31–40 31.5% (73)

41–50 25.9% (60)

 > 50 21.1% (49)

Education level Primary school 22% (51)

Secondary school 39.2% (91)

University 34.9% (81)

No formal training 3.9% (9)

Occupation Farmer 20.7% (48)

Farmer + small scale business 45.3% (105)

Farmer + civil servant 10.8% (25)

Unemployed 23.3% (54)
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expired pesticides and fertilizers, 70.1% (n = 148/211) 
indicated throwing them away, 15.2% (n = 32/211) bur-
ied them, 3.3% (n = 7/211) burned them when possible, 
and 2.4% (n = 5/211) said they returned the pesticide to 
the vendor or used them (3.8%, n = 8/211).

Discussion
Regular surveillance of vector susceptibility to insecti-
cides is crucial for the management of insecticide resist-
ance, which greatly affects the control and elimination 

of malaria [29]. Two species, namely An. gambiae (s.s.) 
and An. coluzzii, are present in Yaoundé. These species 
play major roles in malaria transmission in Cameroon 
[8, 49–53]. Unplanned urbanisation and the practice 
of urban agriculture provide suitable breeding habitats 
for these species in Yaoundé [54–57]. A high insecti-
cide resistance profile to different insecticide classes was 
detected, in conformity with previous studies [10, 11, 13, 
50]. The evolution of insecticide resistance in the pre-
sent study was consistent with studies conducted across 

Table 7  Different usage practices of pesticides by farmers in Yaoundé

Variable Answer % of farmers (n)

Land size  < 2000 m2 87.5% (203)

2000 m2–1 ha 11.2% (26)

 > 1 ha 1.3% (3)

Do you use pesticides and synthetic fertilizers? Yes 91% (211)

No 9.1% (21)

Pesticides used Insecticide 14.2% (30)

Insecticide + fungicide 49.8% (105)

Insecticide + fungicide + nematicide + acaricide 33.7% (71)

Insecticide + fungicide + herbicide 2.4% (5)

Where did you learn how to use pesticides? Advice 80.1% (169)

Training 15.2% (32)

Label 4.8% (10)

On what basis do you make the dilutions? Randomly 10% (21)

Instructions on label 31.8% (67)

Advice from suppliers and others 51.2% (108)

Training or seminar 7.1% (15)

When do you use pesticides and fertilizers? Dry season 23.2% (49)

All seasons 76.8% (162)

Respect the recommended doses Yes (standard doses) 4.3% (9)

No (high doses) 95.7% (202)

What do you do with the empty containers? Burn 14.2% (30)

Bury 7.6% (16)

Throw in the trash 31.3% (66)

Discard indiscriminately 36% (76)

Keep for recycling 10.9% (23)

Frequency of pesticide application during plant cultivation 1 time 17.5% (37)

Several times (up to 6) 82.5% (174)

Are these pesticides
effective?

Yes 93.4% (197)

No 6.6% (14)

Do pesticides and fertilizers often perish? Yes 27% (57)

No 70.1% (148)

No answer 2.8% (6)

What do you do with expired pesticides and fertilizers? Burn 3.3% (7)

Bury 15.2% (32)

Throw away 70.1% (148)

Use 5.2% (11)

Return to the suppliers 2.4% (5)

No answer 3.8% (8)
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Africa supporting the rapid expansion of insecticide 
resistance to various compounds [58–63]. Anopheline 
from Yaoundé also displayed resistance to high concen-
trations of permethrin and deltamethrin. Pyrethroids are 
the main compounds recommended for bednet impreg-
nation [44]. The increasing tolerance of mosquitoes to 
high permethrin and deltamethrin doses is concerning 
and could jeopardize control efforts if nothing is done, 
so further attention is required. Several studies also sug-
gested rapid expansion of pyrethroid resistance affecting 
all anopheline species including An. gambiae (s.s.), An. 
coluzzii, An. arabiensis, An. funestus and Culex species in 
the country [7, 50, 64–70].

High frequency of  kdr allele 1014F was recorded. This 
allele had been reportedly involved in most cases of 
resistance to both pyrethroids and DDT [7, 10]. A low 
frequency of the kdr 1014S allele was recorded, support-
ing no major role for this allele. It is likely that metabolic 
base mechanisms are involved in mosquito resistance. 
The overexpression of several P450 detoxification genes 
such as Cyp6M2, Cyp6P3 and Cyp9K1 has been reported 
in mosquitoes from the city of Yaoundé [55, 64]. Con-
cerning resistance to the carbamate bendiocarb, it could 
be induced by the presence of the mutation ACE-1 and 
the overexpression of different detoxification genes [11, 
64, 71]. Resistance to both carbamates and organophos-
phates is now expanding in malaria vectors across Africa 
[60, 62, 72–74].

Monitoring mosquito population susceptibility and 
resistance genes between 2017 and 2019 suggested high 
variability from one year to another. The evolution of 
insecticide resistance could be closely linked to the evo-
lution of selective pressure induced by pesticide use in 
agriculture. From the survey conducted on pesticide 
usage, knowledge and management practices among 
vendors and farmers in the city of Yaoundé, it appeared 
that an increasing number of compounds are now used 
for controlling pests in agriculture. This same trend was 
recorded in other parts of the country [37, 75–77]. This 
study shows that more than 150 agricultural pesticides 
are sold on the market. The frequent usage of these com-
pounds and their presence in breeding habitats might 
also contribute to the selection, development and spread 
of resistance in mosquitoes [78–81].

Many active ingredients were recorded in pesticides 
sold on the market by retailers. Studies conducted in 
Tanzania similarly identify a high number of formula-
tions sold by retailers [82]. Different classes of insec-
ticides including organophosphates, organochlorines, 
carbamates, pyrethroids and neonicotinoid acid were 
recorded in pesticides sold on the market. Some of the 
compounds such as neonicotinoids (imidacloprid, aceta-
miprid, thiamethoxam, thiacloprid and clothianidin) 

are new classes of insecticides that recently received 
approval for use in public health [83, 84]. The use of 
these compounds in agriculture could rapidly lead to 
insecticide resistance and affect the sustainability of 
new neonicotinoid base control tools. Neonicotinoids 
act by exerting neurotoxic effects via irreversible bind-
ing to insect nicotinic acetylcholine receptors [85]. Other 
insecticide classes are also used in both public health and 
agriculture and could select for insecticide resistance in 
mosquitoes. Several studies have emphasized the poten-
tial role of pesticides in the selection of insecticide resist-
ance [15, 82, 86–89]. Glyphosate, atrazine, paraquat and 
dichloro-phenoxy acetic acid were common active ingre-
dients in herbicides. These compound are considered to 
cause metabolic stress and can induce overexpression of 
genes involved in insecticide resistance [90–94]. Mixture 
of insecticides and fungicides was largely practiced by 
farmers. Other mixtures included insecticides + fungi-
cides + nematicides + acaricides and insecticides + fun-
gicides + herbicides. These mixtures could lead to the 
production of compounds highly toxic to plants and non-
target organisms, harmful to the ecosystem, environment 
and farm operators [95–101]. Although most pesticides 
sold were on the list of pesticides approved for use in 
Cameroon [102], several formulations or versions of poor 
quality with the same brand were found in the market. 
The number of counterfeit agricultural products in Cam-
eroon may be high because of poor check points along 
the boundaries with neighbouring countries [34, 37, 103, 
104]. Some farmers admitted to applying up to six rounds 
of pesticides during the crop-growing stages. This exten-
sive use as well as ineffective application of pesticides was 
also observed by many authors [37, 105–108] and is in 
accordance with the poor quality of pesticides sold on the 
market. Although all the retailers admitted to regularly 
providing advice to end-users, most of them had never 
received training on the use of these compounds. Retail-
ers advise farmers on the choice of pesticides and the 
dosage based on their experience. Farmers on the other 
end did not have knowledge about crop pests, diseases, 
pesticide usage and management of pesticides. They 
mainly relied on information provided by pesticide retail-
ers, other farmers and friends and sometimes from their 
personal work experience. Most of the farmers admitted 
never following the recommended dose; these findings 
are similar to those of studies conducted in other places 
[14, 17, 82, 100]. Pesticide application in farms varied 
according to season. There was a high usage of pesti-
cides during the rainy season. Similar observations were 
made in the southern part of Ivory Coast, where a high 
utilization of insecticides and herbicides was noted dur-
ing the rainy season [17]. In Tanzania, high utilization of 
pesticides and fungicides was recorded instead in the dry 
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season by farmers cultivating rice and vegetables [82]. 
Studies conducted so far in the city of Yaoundé indicated 
moderate variability of susceptibility of An. gambiae (s.l.) 
to insecticides according to seasonal or temporal varia-
tions or type of breeding habitats [10, 50]. Unsafe storage 
and disposal of expired pesticides and empty pesticide 
containers were recorded, showing the need for more 
awareness among farmers and the community to pro-
mote best practices [105, 109–112].

In the light of the present study, it will be important 
for future studies to look for an  association between 
exposure to agricultural pesticides and resistance selec-
tion in malaria vectors. Concerning usage practices, it is 
important to also interview key managers from relevant 
ministries to identify regulatory processes in place for 
the control, supply and selling of pesticides in the coun-
try. The study also sheds light on the evolution of insecti-
cide resistance in malaria vectors and on putative factors 
which could exacerbate the spread of insecticide resist-
ance, highlighting the need for increased collaboration 
between the agricultural and public health sectors for 
better management of insecticide resistance.

Conclusions
The study confirmed the rapid evolution of insecticide 
resistance in An. gambiae (s.l.) populations in Yaoundé 
and the possible influence of pesticide use by farmers 
on the development of insecticide resistance. The study 
calls for increased action towards the population through 
education and sensitization campaigns to improve the 
use and management of pesticides and the environment. 
The study also stresses the need for concerted actions 
between actors from public health and agricultural sec-
tors for the control and elimination of malaria.
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