16 research outputs found

    Evidence for Hox-specified positional identities in adult vasculature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concept of specifying positional information in the adult cardiovascular system is largely unexplored. While the <it>Hox </it>transcriptional regulators have to be viewed as excellent candidates for assuming such a role, little is known about their presumptive cardiovascular control functions and <it>in vivo </it>expression patterns.</p> <p>Results</p> <p>We demonstrate that conventional reporter gene analysis in transgenic mice is a useful approach for defining highly complex <it>Hox </it>expression patterns in the adult vascular network as exemplified by our <it>lacZ </it>reporter gene models for <it>Hoxa3 </it>and <it>Hoxc11</it>. These mice revealed expression in subsets of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) located in distinct regions of the vasculature that roughly correspond to the embryonic expression domains of the two genes. These reporter gene patterns were validated as authentic indicators of endogenous gene expression by immunolabeling and PCR analysis. Furthermore, we show that persistent reporter gene expression in cultured cells derived from vessel explants facilitates <it>in vitro </it>characterization of phenotypic properties as exemplified by the differential response of <it>Hoxc11-lacZ</it>-positive <it>versus</it>-negative cells in migration assays and to serum.</p> <p>Conclusion</p> <p>The data support a conceptual model of <it>Hox-</it>specified positional identities in adult blood vessels, which is of likely relevance for understanding the mechanisms underlying regional physiological diversities in the cardiovascular system. The data also demonstrate that conventional <it>Hox </it>reporter gene mice are useful tools for visualizing complex <it>Hox </it>expression patterns in the vascular network that might be unattainable otherwise. Finally, these mice are a resource for the isolation and phenotypic characterization of specific subpopulations of vascular cells marked by distinct <it>Hox </it>expression profiles.</p

    Interpreting Inflammation

    No full text

    Dysregulated expression of sterol O-acyltransferase 1 (Soat1) in the hair shaft of Hoxc13 null mice.

    No full text
    The cholesterol-metabolizing enzyme sterol O-acetyltransferase (SOAT1) is implicated in an increasing number of biological and pathological processes in a number of organ systems, including the differentiation of the hair shaft. While the functional and regulatory mechanisms underlying these diverse functional roles remain poorly understood, the compartment of the hair shaft known as medulla, affected by mutations in Soat1, may serve as a suitable model for defining some of these mechanisms. A comparative analysis of mRNA and protein expression patterns of Soat1/SOAT1 and the transcriptional regulator Hoxc13/HOXC13 in postnatal skin of FVB/NTac mice indicated co-expression in the most proximal cells of the differentiating medulla. This finding combined with the significant downregulation of Soat1 expression in postnatal skin of both Hoxc13 gene-targeted and transgenic mice based on previously reported DNA microarray results suggests a potential regulatory relationship between the two genes. Non-detectable SOAT1 expression in the defective hair follicle medulla of Hoxc13(tm1Mrc) mice and evidence for binding of HOXC13 to the Soat1 upstream control region obtained by ChIP assay suggests that Soat1 is a downstream regulatory target for HOXC13 during medulla differentiation. Exp Mol Pathol 2015 Dec; 99(3):441-44

    Changing topographic Hox expression in blood vessels results in regionally distinct vessel wall remodeling

    Get PDF
    Summary The distinct topographic Hox expression patterns observed in vascular smooth muscle cells (VSMCs) of the adult cardiovascular system suggest that these transcriptional regulators are critical for maintaining region-specific physiological properties of blood vessels. To test this proposition, we expanded the vascular Hoxc11 expression domain normally restricted to the lower limbs by utilizing an innovative integrated tetracycline regulatory system and Transgelin promoter elements to induce Hoxc11 expression universally in VSMCs of transgenic mice. Ectopic Hoxc11 expression in carotid arteries, aortic arch and descending aorta resulted in drastic vessel wall remodeling involving elastic laminae fragmentation, medial smooth muscle cell loss, and intimal lesion formation. None of these alterations were observed upon induction of Hoxc11 transgene expression in the femoral artery, i.e. the natural Hoxc11 activity domain, although this vessel was greatly enlarged, comparable to the topographically restricted vascular changes seen in Hoxc11−/− mice. To begin defining Hoxc11-controlled pathways of vascular remodeling, we performed immunolabeling studies in conjunction with co-transfection and chromatin immunoprecipitation (ChIP) assays using mouse vascular smooth muscle (MOVAS) cells. The results suggest direct transcriptional control of two members of the matrix metalloproteinase (Mmp) family, including Mmp2 and Mmp9 that are known as key players in the inception and progression of vascular remodeling events. In summary, the severe vascular abnormalities resulting from the induced dysregulated expression of a Hox gene with regional vascular patterning functions suggest that proper Hox function and regulation is critical for maintaining vascular functional integrity

    Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU.1) and HOXC13

    No full text
    The mouse zinc‐finger gene Zfp521 (also known as ecotropic viral insertion site 3; Evi3; and ZNF521 in humans) has been identified as a B‐cell proto‐oncogene, causing leukemia in mice following retroviral insertions in its promoter region that drive Zfp521 over‐expression. Furthermore, ZNF521 is expressed in human hematopoietic cells, and translocations between ZNF521 and PAX5 are associated with pediatric acute lymphoblastic leukemia. However, the regulatory factors that control Zfp521 expression directly have not been characterized. Here we demonstrate that the transcription factors SPI1 (PU.1) and HOXC13 synergistically regulate Zfp521 expression, and identify the regions of the Zfp521 promoter required for this transcriptional activity. We also show that SPI1 and HOXC13 activate Zfp521 in a dose‐dependent manner. Our data support a role for this regulatory mechanism in vivo, as transgenic mice over‐expressing Hoxc13 in the fetal liver show a strong correlation between Hoxc13 expression levels and Zfp521 expression. Overall these experiments provide insights into the regulation of Zfp521 expression in a nononcogenic context. The identification of transcription factors capable of activating Zfp521 provides a foundation for further investigation of the regulatory mechanisms involved in ZFP521‐driven cell differentiation processes and diseases linked to Zfp521 mis‐expression

    Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment.

    No full text
    Mammary epithelial progenitors are the normal cell-of-origin of breast cancer. We previously defined a population of p27+ quiescent hormone-responsive progenitor cells in the normal human breast whose frequency associates with breast cancer risk. Here, we describe that deletion of the Cdkn1b gene encoding the p27 cyclin-dependent kinase inhibitor in the estrogen-induced mammary tumor-susceptible ACI rat strain leads to a decrease in the relative frequencies of Cd49b+ mammary luminal epithelial progenitors and pregnancy-related differentiation. We show by comprehensive gene expression profiling of purified progenitor and differentiated mammary epithelial cell populations that p27 deletion has the most pronounced effects on luminal progenitors. Cdkn1b-/- females have decreased fertility, but rats that are able to get pregnant had normal litter size and were able to nurse their pups implying that loss of p27 in ACI rats does not completely abrogate ovarian function and lactation. Reciprocal mammary gland transplantation experiments indicate that the p27-loss-induced changes in mammary epithelial cells are not only caused by alterations in their intrinsic properties, but are likely due to altered hormonal signaling triggered by the perturbed systemic endocrine environment observed in Cdkn1b-/- females. We also observed a decrease in the frequency of mammary epithelial cells positive for progesterone receptor (Pr) and FoxA1, known direct transcriptional targets of the estrogen receptor (Erα), and an increase in phospho-Stat5 positive cells commonly induced by prolactin (Prl). Characterization of genome-wide Pr chromatin binding revealed distinct binding patterns in mammary epithelial cells of Cdkn1b+/+ and Cdkn1b-/- females and enrichment in genes with known roles in Notch, ErbB, leptin, and Erα signaling and regulation of G1-S transition. Our data support a role for p27 in regulating the pool size of hormone-responsive luminal progenitors that could impact breast cancer risk
    corecore