148 research outputs found
Insecticide resistance in indoor and outdoor-resting Anopheles gambiae in Northern Ghana.
BACKGROUND: Selection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined. METHODS: F1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)-1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays. RESULTS: Susceptibility of Anopheles coluzzii to deltamethrin 24 h post-exposure was significantly higher in indoor (mortality = 5%) than outdoor (mortality = 2.5%) populations (P = 0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor = 98%, outdoor = 100%). Susceptibility to DDT was significantly higher in outdoor (mortality = 9%) than indoor (mortality = 0%) mosquitoes (P = 0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor = 90%, outdoor = 95%. P = 0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P = 0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor = : 1.70/mg protein; Indoor = 1.35/mg protein. P < 0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P = 0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%). CONCLUSIONS: The overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended
Expression, Purification, and Monitoring of Conformational Changes of hCB2 TMH67H8 in Different Membrane-Mimetic Lipid Mixtures Using Circular Dichroism and NMR Techniques
This work was intended to develop self-assembly lipids for incorporating G-protein coupled receptors (GPCRs) in order to improve the success rate for nuclear magnetic resonance spectroscopy (NMR) structural elucidation. We hereby report the expression and purification of uniformly 15N-labeled human cannabinoid receptor-2 domain in insect cell media. The domain was refolded by screening several membrane mimetic environments. Different q ratios of isotropic bicelles were screened for solubilizing transmembrane helix 6, 7 and 8 (TMH67H8). As the concentration of dimyristoylphosphocholine (DMPC) was increased such that the q ratio was between 0.16 and 0.42, there was less crowding in the cross peaks with increasing q ratio. In bicelles of q = 0.42, the maximum number of cross peaks were obtained and the cross peaks were uniformly dispersed. The receptor domain in bicelles beyond q = 0.42 resulted in peak crowding. These studies demonstrate that GPCRs folding especially in bicelles is protein-specific and requires the right mix of the longer chain and shorter chain lipids to provide the right environment for proper folding. These findings will allow further development of novel membrane mimetics to provide greater diversity of lipid mixtures than those currently being employed for GPCR stability and folding, which are critical for both X-ray and NMR studies of GPCRs
Assessing the impact of differences in malaria transmission intensity on clinical and haematological indices in children with malaria.
BACKGROUND: Malaria control interventions have led to a decline in transmission intensity in many endemic areas, and resulted in elimination in some areas. This decline, however, will lead to delayed acquisition of protective immunity and thus impact disease manifestation and outcomes. Therefore, the variation in clinical and haematological parameters in children with malaria was assessed across three areas in Ghana with varying transmission intensities. METHODS: A total of 568 children between the ages of 2 and 14 years with confirmed malaria were recruited in hospitals in three areas with varying transmission intensities (Kintampo > Navrongo > Accra) and a comprehensive analysis of parasitological, clinical, haematological and socio-economic parameters was performed. RESULTS: Areas of lower malaria transmission tended to have lower disease severity in children with malaria, characterized by lower parasitaemias and higher haemoglobin levels. In addition, total white cell counts and percent lymphocytes decreased with decreasing transmission intensity. The heterozygous sickle haemoglobin genotype was protective against disease severity in Kintampo (P = 0.016), although this was not significant in Accra and Navrongo. Parasitaemia levels were not a significant predictor of haemoglobin level after controlling for age and gender. However, higher haemoglobin levels in children were associated with certain socioeconomic factors, such as having fathers who had any type of employment (P < 0.05) and mothers who were teachers (P < 0.05). CONCLUSIONS: The findings demonstrate significant differences in the haematological presentation and severity of malaria among areas with different transmission intensity in Ghana, indicating that these factors need to be considered in planning the management of the disease as the endemicity is expected to decline after control interventions
High cases of submicroscopic Plasmodium falciparum infections in a suburban population of Lagos, Nigeria.
BACKGROUND: Asymptomatic malaria parasites are significant sources of infections for onward malaria transmission. Conventional tools for malaria diagnosis such as microscopy and rapid diagnostic test kits (RDT) have relatively low sensitivity, hence the need for alternative tools for active screening of such low-density infections. METHODS: This study tested var acidic terminal sequence-based (varATS) quantitative polymerase chain reaction (qPCR) for screening asymptomatic Plasmodium falciparum infections among dwellers of a sub-urban community in Lagos, Nigeria. Clinically healthy participants were screened for malaria using microscopy, RDT and varATS qPCR techniques. Participants were stratified into three age groups: 1-5, 6-14 and > 14 years old. RESULTS: Of the 316 participants screened for asymptomatic malaria infection, 78 (24.68%) were positive by microscopy, 99 (31.33%) were positive by RDT and 112 (35.44%) by varATS qPCR. Participants aged 6-14 years had the highest prevalence of asymptomatic malaria, with geometric means of ~ 116 parasites/µL and ~ 6689 parasites/µL as detected by microscopy and varATS, respectively. CONCLUSION: This study has revealed high prevalence of asymptomatic malaria in the study population, with varATS detecting additional sub-microscopic infections. The highest concentration of asymptomatic malaria was observed among school-age children between 6 and 14 years old. A large-scale screening to identify other potential hotspots of asymptomatic parasites in the country is recommended
Plasmodium falciparum Sexual Commitment Rate Variation among Clinical Isolates and Diverse Laboratory-Adapted Lines.
Asexual blood-stage malaria parasites must produce sexual progeny to infect mosquitoes. It is important to understand the scope and causes of intraspecific variation in sexual commitment rates, particularly for the major human parasite P. falciparum. First, two alternative assay methods of measuring sexual commitment were compared to test a genetically modified P. falciparum line with elevated commitment rates inducible by overexpression of GDV1. The methods yielded correlated measurements with higher sensitivity and precision being achieved by one employing detection of the early gametocyte differentiation marker Pfs16. Thus, this was used to survey a diverse range of parasite lines and test each in multiple biological replicate assays in a serum-free medium supplemented with Albumax. There were differences among six recent clinical isolates from Ghana in their mean rates of sexual commitment per cycle, ranging from 3.3% to 12.2%. Among 13 diverse long-term laboratory-adapted lines, mean sexual commitment rates for most ranged from 4.7% to 13.4%, a few had lower rates with means from 0.3 to 1.6%, and one with a nonfunctional ap2-g gene always showed zero commitment. Among a subset of lines tested for the effects of exogenous choline to suppress commitment, there were significant differences. As expected, there was no effect in a line that had lost the gdv1 gene and that had generally low commitment, whereas the others showed quantitatively variable but significant responses to choline, suggesting potential trait variation. The results indicated the value of performing multiple replicate assays for understanding the variation of this key reproductive trait that likely affects transmission. IMPORTANCE Only sexual-stage malaria parasites are transmitted from human blood to mosquitoes. Thus, it is vital to understand variations in sexual commitment rates because these may be modifiable or susceptible to blocking. Two different methods of commitment rate measurement were first compared, demonstrating higher sensitivity and precision by the detection of an early differentiation marker, which was subsequently used to survey diverse lines. Clinical isolates from Ghana showed significant variation in mean per-cycle commitment rates and variation among biological replicates. Laboratory-adapted lines of diverse origins had a wider range with most being within the range observed for the clinical isolates, while a minority consistently had lower or zero rates. There was quantitative variation in the effects when adding choline to suppress commitment, indicating differing responsiveness of parasites to this environmental modification. Performing multiple assay replicates and comparisons of diverse isolates was important to understand this trait and its potential effects on transmission
Comparison of genomic signatures of selection on Plasmodium falciparum between different regions of a country with high malaria endemicity.
BACKGROUND: Genome wide sequence analyses of malaria parasites from widely separated areas of the world have identified contrasting population structures and signatures of selection. To compare relatively closely situated but ecologically contrasting regions within an endemic African country, population samples of Plasmodium falciparum clinical isolates were collected in Ghana from Kintampo in the central forest-savannah area, and Navrongo in a drier savannah area ~350 km to the north with more seasonally-restricted transmission. Parasite DNA was sequenced and paired-end reads mapped to the P. falciparum reference genome. RESULTS: High coverage genome wide sequence data for 85 different clinical isolates enabled analysis of 121,712 single nucleotide polymorphisms (SNPs). The local populations had similar proportions of mixed genotype infections, similar SNP allele frequency distributions, and eleven chromosomal regions had elevated integrated haplotype scores (|iHS|) in both. A between-population Rsb metric comparing extended haplotype homozygosity indicated a stronger signal within Kintampo for one of these regions (on chromosome 14) and in Navrongo for two of these regions (on chromosomes 10 and 13). At least one gene in each of these identified regions is a potential target of locally varying selection. The candidates include genes involved in parasite development in mosquitoes, members of variant-expressed multigene families, and a leading vaccine-candidate target of immunity. CONCLUSIONS: Against a background of very similar population structure and selection signatures in the P. falciparum populations of Ghana, three narrow genomic regions showed evidence indicating local differences in historical timing or intensity of selection. Sampling of closely situated populations across heterogeneous environments has potential to refine the mapping of important loci under temporally or spatially varying selection
Associations between red cell polymorphisms and Plasmodium falciparum infection in the middle belt of Ghana.
BACKGROUND: Red blood cell (RBC) polymorphisms are common in malaria endemic regions and are known to protect against severe forms of the disease. Therefore, it is important to screen for these polymorphisms in drugs or vaccines efficacy trials. This study was undertaken to evaluate associations between clinical malaria and RBC polymorphisms to assess biological interactions that may be necessary for consideration when designing clinical trials. METHOD: In a cross-sectional study of 341 febrile children less than five years of age, associations between clinical malaria and common RBC polymorphisms including the sickle cell gene and G6PD deficiency was evaluated between November 2008 and June 2009 in the middle belt of Ghana, Kintampo. G6PD deficiency was determined by quantitative methods whiles haemoglobin variants were determined by haemoglobin titan gel electrophoresis. Blood smears were stained with Giemsa and parasite densities were determined microscopically. RESULTS: The prevalence of clinical malarial among the enrolled children was 31.9%. The frequency of G6PD deficiency was 19.0% and that for the haemoglobin variants were 74.7%, 14.7%, 9.1%, 0.9% respectively for HbAA, HbAC, HbAS and HbSS. In Multivariate regression analysis, children with the HbAS genotype had 79% lower risk of malaria infection compared to those with the HbAA genotypes (OR = 0.21, 95% CI: 0.06-0.73, p = 0.01). HbAC genotype was not significantly associated with malaria infection relative to the HbAA genotype (OR = 0.70, 95% CI: 0.35-1.42, p = 0.33). G6PD deficient subgroup had a marginally increased risk of malaria infection compared to the G6PD normal subgroup (OR = 1.76, 95% CI: 0.98-3.16, p = 0.06). CONCLUSION: These results confirm previous findings showing a protective effect of sickle cell trait on clinical malaria infection. However, G6PD deficiency was associated with a marginal increase in susceptibility to clinical malaria compared to children without G6PD deficiency
Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites.
Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine
Highlights on the application of genomics and bioinformatics in the fight against infectious diseases : challenges and opportunities in Africa
Genomics and bioinformatics are increasingly contributing to our understanding of infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis and parasites such as Plasmodium falciparum. This ranges from investigations of disease outbreaks and pathogenesis, host and pathogen genomic variation, and host immune evasion mechanisms to identification of potential diagnostic markers and vaccine targets. High throughput genomics data generated from pathogens and animal models can be combined with host genomics and patients’ health records to give advice on treatment options as well as potential drug and vaccine interactions. However, despite accounting for the highest burden of infectious diseases, Africa has the lowest research output on infectious disease genomics. Here we review the contributions of genomics and bioinformatics to the management of infectious diseases of serious public health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis. Furthermore, we discuss how genomics and bioinformatics can be applied to identify drug and vaccine targets. We conclude by identifying challenges to genomics research in Africa and highlighting how these can be overcome where possible
Plasmodium falciparum Merozoite Associated Armadillo Protein (PfMAAP) Is Apically Localized in Free Merozoites and Antibodies Are Associated With Reduced Risk of Malaria.
Understanding the functional role of proteins expressed by Plasmodium falciparum is an important step toward unlocking potential targets for the development of therapeutic or diagnostic interventions. The armadillo (ARM) repeat protein superfamily is associated with varied functions across the eukaryotes. Therefore, it is important to understand the role of members of this protein family in Plasmodium biology. The Plasmodium falciparum armadillo repeats only (PfARO; Pf3D7_0414900) and P. falciparum merozoite organizing proteins (PfMOP; Pf3D7_0917000) are armadillo-repeat containing proteins previously characterized in P. falciparum. Here, we describe the characterization of another ARM repeat-containing protein in P. falciparum, which we have named the P. falciparum Merozoites-Associated Armadillo repeats protein (PfMAAP). Antibodies raised to three different synthetic peptides of PfMAAP show apical staining of free merozoites and those within the mature infected schizont. We also demonstrate that the antibodies raised to the PfMAAP peptides inhibited invasion of erythrocytes by merozoites from different parasite isolates. In addition, naturally acquired human antibodies to the N- and C- termini of PfMAAP are associated with a reduced risk of malaria in a prospective cohort analysis
- …