21 research outputs found

    Velocity versus Offset (VVO) Estimation Using Local Event Correlation and Its Application in Seismic Processing & Analysis

    Get PDF
    Conventional velocity analysis is usually done in a relatively spare grid, for instance every half kilometers, during the processing of seismic data. It is very laborious work and very subjective. To deliver an accurate velocity picking, processing geophysicists must have a good understanding of geological background of area being analyzed and experiences. Velocity errors often occur during picking. Proper quality control and checking are a must. A good and reliable velocity field is very important in seismic processing for achieving high-quality seismic images as well as for delivering an accurate depth conversion. The new method presented here, was developed to correct velocity errors automatically by means of residual velocity correction, and to produce an offset-dependent RMS velocity field at the same time. The method is data driven, based on the normal move out equation (NMO) and measuring the local even correlation between adjacent traces. The stacking velocity is derived simply by averaging the velocity field. The proposed method was tested on synthetic and real data examples with good result. The velocity field has certain characteristics related to hydrocarbon presence. Supriyono (2011 and 2012) developed a new DHI method using velocity gradient attributes by cross-plotting the velocity versus offset (VVO). The velocity gradient exhibits high anomalous values in the presence of gas

    Velocity Versus Offset (VVO) Estimation Using Local Event Correlation and Its Application in Seismic Processing & Analysis

    Full text link
    Conventional velocity analysis is usually done in a relatively spare grid, for instance every half kilometers, during the processing of seismic data. It is very laborious work and very subjective. To deliver an accurate velocity picking, processing geophysicists must have a good understanding of geological background of area being analyzed and experiences. Velocity errors often occur during picking. Proper quality control and checking are a must. A good and reliable velocity field is very important in seismic processing for achieving high-quality seismic images as well as for delivering an accurate depth conversion. The new method presented here, was developed to correct velocity errors automatically by means of residual velocity correction, and to produce an offset-dependent RMS velocity field at the same time. The method is data driven, based on the normal move out equation (NMO) and measuring the local even correlation between adjacent traces. The stacking velocity is derived simply by averaging the velocity field. The proposed method was tested on synthetic and real data examples with good result. The velocity field has certain characteristics related to hydrocarbon presence. Supriyono (2011 and 2012) developed a new DHI method using velocity gradient attributes by cross-plotting the velocity versus offset (VVO). The velocity gradient exhibits high anomalous values in the presence of gas

    Pengaruh Variasi Geometri Crash Box 2 Segmen Terhadap Kemampuan Menyerap Energi Impak Dengan Simulasi Komputer

    Full text link
    Crash box is a passive safety system placed on four wheeled vehicle, the purposes it to absorb the impact energy due to bumper no longer able hold the impact happened. There have been many studies done with the type of segment, so it needs development especially segment additional, and in this study of two segments of crash box is expected to absorb more energy, the additional of this segment purposes to increase the critical load so can be reduced the buckling. The method in this study used is ANSYS Workbench 14.5 finite element software. The variables used are the section type crash box geometry of circle, square, and hexagon, with cross section area of 1492 mm2, 1771 mm2, and 2045 mm2 and uniform height of 100 mm, the material used is aluminum AA 7003-T7. Simulation process begins when the impactor collision with speed 16 km/hour. From the research result is that moment inertia of the cross section area were able an important role in the absorption of impact energy, the cross section area 2045 mm2 were able to absorb the higher energy for each type of crash box, and the section of hexagon term that can absorb highest impact energy

    Pengaruh Kuat Arus Pengelasan Dua Layer Dengan Metode GTAW Dan SMAW Terhadap Kekuatan Tarik Pada Plat ASTM a 36

    Full text link
    Welding is a combining method of two materials by using thermal energy. It was divided into several groups including the classification of the liquid, press and soldering. Arc welding is the most commonly used in every time, such as welding with consumable and not consumable electrodes. Two types of arc welding have deficiency and excess, respectively; combining both types of arc welding is needed to cover each other's excess. The method in this research was combining of welding GTAW (Gas Tungsten Arc Welding) and SMAW (Shield Metal Arc Welding) with variation in Root Pass and Cover Pass position. The current of GTAW with 100A, 130A, 160A, and SMAW with 65A, 80A, and 95A were used in this research. ASTM A 36 was used as the material. The plat thickness was 7mm and single V groove 600. Combining the welding GTAW-GTAW between 100A and 100A for the first and second layer has the highest tensile strength, and the lowest tensile strength was in combination of welding between GTAW-SMAW with 65A and 100A

    Spectroscopy and Dynamics of K Atoms on Argon Clusters

    No full text
    International audienceWe present a combined experimental and simulation study of the 4s → 4p photoexcitation of the K atom trapped at the surface of ArN clusters made of a few hundred Ar atoms. Our experimental method based on photoelectron spectroscopy allows us to firmly establish that one single K atom is trapped at the surface of the cluster. The absorption spectrum is characterized by the splitting of the atomic absorption line into two broad bands, a Π band associated with p orbitals parallel to the cluster surface and a Σ band associated with the perpendicular orientation. The spectrum is consistent with observations reported for K atoms trapped on lighter inert gas clusters, but the splitting between the Π and Σ bands is significantly larger. We show that a large amount of K atoms are transiently stuck and eventually lost by the Ar cluster, in contrast with previous observations reported for alkaline earth metal systems. The excitation in the Σ band leads systematically to the ejection of the K atom from the Ar cluster. On the contrary, excitation in the Π band leads to the formation of a bound state. In this case, the analysis of the experimental photoelectron spectrum by means of nonadiabatic molecular dynamics simulation shows that the relaxation drives the system toward a basin where the coordination of the K atom is 2.2 Ar atoms on the average, in a poorly structured surface

    Absorption Spectroscopy, a Tool for Probing Local Structures and the Onset of Large-Amplitude Motions in Small KArn Clusters at Increasing Temperatures

    No full text
    International audiencePhotoabsorption spectra of KArn (n = 1-10) are simulated at temperatures ranging between 5 and 25 K. The calculations associate a Monte Carlo (MC) method to sample cluster geometries at temperature T, with a one-electron ab initio model to calculate the ground-state and excited-state energies of the cluster. The latter model replaces the K(+) core electrons and all the electrons of the Ar atoms by appropriate pseudopotentials, complemented by core polarization potentials. It also provides the necessary oscillator strengths to simulate the spectra. Global optimization by basin-hopping is used in combination with MC simulation at low temperature (5 K) to identify the most stable isomer and remarkable isomers of ground-state KArn clusters, which are stable with respect to deformations of the order of those expected with Zero Point Energy motions. The absorption spectra calculated for each of these isomers at 5 K suggest that absorption spectroscopy can probe sensitively the local environment of K atom: surface location of K with respect to a close-packed Ar moiety, number of Ar atom in close vicinity, and local symmetry about K. Simulation at increasing temperatures, up to the evaporation limit of K out of the cluster, shows the onset of large amplitude motions above 20 K, when the K atom experiences a variety of local environments

    Arabic Patient-Reported Measures of Activity and Participation for Children: A Systematic Review of Psychometric Properties

    No full text
    Aim: To systematically review measurement properties of Arabic patient-reported outcome measures (PROMs) that assess activity and participation in children with and without health conditions. Method: Four databases were searched. Arabic PROMs with focus on activity and/or participation constructs were selected. Data on measurement properties were extracted and the methodological quality of the studies was assessed by COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) risk of bias checklist. Result: Of the total 149 articles screened, only 10 studies involving 10 measures that assessed activity and/or participation in children with or without health conditions were included. The focus of all PROMs is primarily on the activity of daily living at home and/or school, but dimensions of measurement differed across PROMs. None of the PROMs demonstrated sufficient properties for all psychometrics. The most studied psychometric property was internal consistency, whereas the least studied psychometric property was structural validity. Responsiveness was not investigated in any of the studies included. Conclusions: Despite the presence of Arabic PROMs on activity and participation for children, none of the reviewed measures satisfied all psychometric properties. Clinicians and researchers are encouraged to carefully select PROMs that are psychometrically sound and appropriate for the construct being measured

    Multipronged mapping to the dynamics of a barium atom deposited on argon clusters - Supplementary Material

    No full text
    International audienceThe dynamics of an electronically excited barium atom deposited at the surface of an Ar≈500 cluster was explored in a multipronged approach which associates information from frequency-resolved nanosecond experiments and information from femtosecond time-resolved experiments. In both types of experiments, the dynamics is monitored by photoelectron and photoion spectroscopy
    corecore