781 research outputs found
Small-x Dipole Evolution Beyond the Large-N_c Limit
We present a method to include colour-suppressed effects in the Mueller
dipole picture. The model consistently includes saturation effects both in the
evolution of dipoles and in the interactions of dipoles with a target in a
frame-independent way.
When implemented in a Monte Carlo simulation together with our previous model
of energy--momentum conservation and a simple dipole description of initial
state protons and virtual photons, the model is able to reproduce to a
satisfactory degree both the gamma*-p cross sections as measured at HERA as
well as the total p-p cross section all the way from ISR energies to the
Tevatron and beyond
Numerical solution of the nonlinear evolution equation at small x with impact parameter and beyond the LL approximation
Nonlinear evolution equation at small x with impact parameter dependence is
analyzed numerically. Saturation scales and the radius of expansion in impact
parameter are extracted as functions of rapidity. Running coupling is included
in this evolution, and it is found that the solution is sensitive to the
infrared regularization. Kinematical effects beyond leading logarithmic
approximation are taken partially into account by modifying the kernel which
includes the rapidity dependent cuts. While the local nonlinear evolution is
not very sensitive to these effects, the kinematical constraints cannot be
neglected in the evolution with impact parameter.Comment: 22 pages, 37 figures, RevTe
Elastic and quasi-elastic and scattering in the Dipole Model
We have in earlier papers presented an extension of Mueller's dipole cascade
model, which includes sub-leading effects from energy conservation and running
coupling as well as colour suppressed saturation effects from pomeron loops via
a ``dipole swing''. The model was applied to describe the total and diffractive
cross sections in and collisions, and also the elastic cross
section in scattering.
In this paper we extend the model to describe the corresponding quasi-elastic
cross sections in , namely the exclusive production of vector mesons
and deeply virtual compton scattering. Also for these reactions we find a good
agrement with measured cross sections. In addition we obtain a reasonable
description of the -dependence of the elastic and quasi-elastic
cross sections
Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
Two-dimensional materials offer new opportunities for both fundamental
science and technological applications, by exploiting the electron spin. While
graphene is very promising for spin communication due to its extraordinary
electron mobility, the lack of a band gap restricts its prospects for
semiconducting spin devices such as spin diodes and bipolar spin transistors.
The recent emergence of 2D semiconductors could help overcome this basic
challenge. In this letter we report the first important step towards making 2D
semiconductor spin devices. We have fabricated a spin valve based on ultra-thin
(5 nm) semiconducting black phosphorus (bP), and established fundamental spin
properties of this spin channel material which supports all electrical spin
injection, transport, precession and detection up to room temperature (RT).
Inserting a few layers of boron nitride between the ferromagnetic electrodes
and bP alleviates the notorious conductivity mismatch problem and allows
efficient electrical spin injection into an n-type bP. In the non-local spin
valve geometry we measure Hanle spin precession and observe spin relaxation
times as high as 4 ns, with spin relaxation lengths exceeding 6 um. Our
experimental results are in a very good agreement with first-principles
calculations and demonstrate that Elliott-Yafet spin relaxation mechanism is
dominant. We also demonstrate that spin transport in ultra-thin bP depends
strongly on the charge carrier concentration, and can be manipulated by the
electric field effect
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Next-to-leading and resummed BFKL evolution with saturation boundary
We investigate the effects of the saturation boundary on small-x evolution at
the next-to-leading order accuracy and beyond. We demonstrate that the
instabilities of the next-to-leading order BFKL evolution are not cured by the
presence of the nonlinear saturation effects, and a resummation of the higher
order corrections is therefore needed for the nonlinear evolution. The
renormalization group improved resummed equation in the presence of the
saturation boundary is investigated, and the corresponding saturation scale is
extracted. A significant reduction of the saturation scale is found, and we
observe that the onset of the saturation corrections is delayed to higher
rapidities. This seems to be related to the characteristic feature of the
resummed splitting function which at moderately small values of x possesses a
minimum.Comment: 34 page
Development of paleoseismic trench logging and dating techniques: a case study on the Central North Anatolian Fault
The North Anatolian Fault (NAF) is a dextral strike slip fault zone extending ~1400km in an arc across northern Turkey. This study seeks to further constrain the timing of ground rupturing earthquakes of the NAF while developing the techniques used in paleoseismology. A paleoseismic trench was opened ~2.7km NW of Destek on a segment which ruptured (for ~280km) in the 1943 Tosya Earthquake (Mw:7.7). The trench site comprises a pop-up structure formed by a small releasing step-over at a restraining bend which has caused progressive growth of an upslope facing scarp. The trench is situated across the main fault trace and a trapped sedimentary sequence that includes several paleosoils. The stratigraphy is expected to be Late Holocene and historic in age due to the high level of activity on the NAF, although this has yet to be confirmed by radiometric dating. Preliminary interpretation of the trench stratigraphy indicates a record of up to 6 paleoearthquake events, the presence of an angular unconformity suggests the record may be incomplete beyond the 3 most recent events on this strand.Subtle contrasts in stratigraphy made conventional face logging difficult and was therefore augmented by mapping the magnetic susceptibility (MS) of the west wall. Approximately 6000 measurements were made using a Bartington MS2 Magnetic Susceptibility Meter with a MS2E (point) Sensor with a 5cm vertical spacing and a 20cm horizontal spacing predominantly on one side of the trench. A pilot test led to development of a strategy of moving the sensor to the nearest exposure of coarse sand or finer grained material where possible to minimize the noise generated by individual clasts. To negate the sensitivity of the MS logging method to variations in temperature the survey was conducted at night. Plotted data clearly shows the contact between rock units, the rock-soil interface (reflecting fault juxtaposition), anthropogenic influence and some soil stratigraphy. Other paleoseismic investigations on this section of the NAF (Hartleb R. et al 2003 and Yoshioka T. et al 2000) have encountered out-of-stratigraphic-order ranges in 14C ages. They attributed this to reworking, in addition to which the effects of long term human occupation are likely to be similar. The trench yielded a large amount of datable material including 158 charcoal and 140 minute gastropod samples, and some ceramic, bone and slag samples. Unlike charcoal and bone fragments, fragile minute gastropods are unlikely to have been transported, reworked or used by humans, ultimately providing improved accuracy of temporal constraints on paleoearthquakes. Using both charcoal and gastropod samples, the trench chronology can be established and the use of minute gastropods for dating paleoearthquakes can be critiqued
Energy Conservation and Saturation in Small-x Evolution
Important corrections to BFKL evolution are obtained from non-leading
contributions and from non-linear effects due to unitarisation or saturation.
It has been difficult to estimate the relative importance of these effects, as
NLO effects are most easily accounted for in momentum space while unitarisation
and saturation are easier in transverse coordinate space. An essential
component of the NLO contributions is due to energy conservation effects, and
in this paper we present a model for implementing such effects together with
saturation in Mueller's dipole evolution formalism. We find that energy
conservation severely dampens the small-x rise of the gluon density and, as a
consequence, the onset of saturation is delayed. Using a simple model for the
proton we obtain a reasonable qualitative description of the x-dependence of F2
at low Q^2 as measured at HERA even without saturation effects. We also give
qualitative descriptions of the energy dependence of the cross section for
gamma*-gamma* and gamma*-nucleus scattering
Spin Relaxation in Single Layer Graphene with Tunable Mobility
Graphene is an attractive material for spintronics due to theoretical
predictions of long spin lifetimes arising from low spin-orbit and hyperfine
couplings. In experiments, however, spin lifetimes in single layer graphene
(SLG) measured via Hanle effects are much shorter than expected theoretically.
Thus, the origin of spin relaxation in SLG is a major issue for graphene
spintronics. Despite extensive theoretical and experimental work addressing
this question, there is still little clarity on the microscopic origin of spin
relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to
tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect
of charged impurity scattering on spin relaxation in SLG. Our results
demonstrate that while charged impurities can greatly affect mobility, the spin
lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure
Odderon in baryon-baryon scattering from the AdS/CFT correspondence
Based on the AdS/CFT correspondence, we present a holographic description of
various C-odd exchanges in high energy baryon-baryon and baryon-antibaryon
scattering, and calculate their respective contributions to the difference in
the total cross sections. We predict that, due to the warp factor of AdS_5, the
total cross section in pp collisions is larger than in p\bar{p} collisions at
asymptotically high energies.Comment: 23 pages, v2: minor changes, to be published in JHE
- …
