309 research outputs found

    Elastic and quasi-elastic pppp and γp\gamma^\star p scattering in the Dipole Model

    Full text link
    We have in earlier papers presented an extension of Mueller's dipole cascade model, which includes sub-leading effects from energy conservation and running coupling as well as colour suppressed saturation effects from pomeron loops via a ``dipole swing''. The model was applied to describe the total and diffractive cross sections in pppp and γp\gamma^*p collisions, and also the elastic cross section in pppp scattering. In this paper we extend the model to describe the corresponding quasi-elastic cross sections in γp\gamma^*p, namely the exclusive production of vector mesons and deeply virtual compton scattering. Also for these reactions we find a good agrement with measured cross sections. In addition we obtain a reasonable description of the tt-dependence of the elastic pppp and quasi-elastic γp\gamma^\star p cross sections

    Next-to-leading and resummed BFKL evolution with saturation boundary

    Get PDF
    We investigate the effects of the saturation boundary on small-x evolution at the next-to-leading order accuracy and beyond. We demonstrate that the instabilities of the next-to-leading order BFKL evolution are not cured by the presence of the nonlinear saturation effects, and a resummation of the higher order corrections is therefore needed for the nonlinear evolution. The renormalization group improved resummed equation in the presence of the saturation boundary is investigated, and the corresponding saturation scale is extracted. A significant reduction of the saturation scale is found, and we observe that the onset of the saturation corrections is delayed to higher rapidities. This seems to be related to the characteristic feature of the resummed splitting function which at moderately small values of x possesses a minimum.Comment: 34 page

    Electronic Spin Transport in Dual-Gated Bilayer Graphene

    Full text link
    The elimination of extrinsic sources of spin relaxation is key in realizing the exceptional intrinsic spin transport performance of graphene. Towards this, we study charge and spin transport in bilayer graphene-based spin valve devices fabricated in a new device architecture which allows us to make a comparative study by separately investigating the roles of substrate and polymer residues on spin relaxation. First, the comparison between spin valves fabricated on SiO2 and BN substrates suggests that substrate-related charged impurities, phonons and roughness do not limit the spin transport in current devices. Next, the observation of a 5-fold enhancement in spin relaxation time in the encapsulated device highlights the significance of polymer residues on spin relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin relaxation time decreases monotonically as carrier concentration increases, and n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The sudden increase in the spin relaxation time with no corresponding signature in the charge transport suggests the presence of a magnetic resonance close to the charge neutrality point. We also demonstrate, for the first time, spin transport across bipolar p-n junctions in our dual-gated device architecture that fully integrates a sequence of encapsulated regions in its design. At low temperatures, strong suppression of the spin signal was observed while a transport gap was induced, which is interpreted as a novel manifestation of impedance mismatch within the spin channel

    Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    Full text link
    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron spin. While graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a band gap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of 2D semiconductors could help overcome this basic challenge. In this letter we report the first important step towards making 2D semiconductor spin devices. We have fabricated a spin valve based on ultra-thin (5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material which supports all electrical spin injection, transport, precession and detection up to room temperature (RT). Inserting a few layers of boron nitride between the ferromagnetic electrodes and bP alleviates the notorious conductivity mismatch problem and allows efficient electrical spin injection into an n-type bP. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 um. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that Elliott-Yafet spin relaxation mechanism is dominant. We also demonstrate that spin transport in ultra-thin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect

    Nanowires of Lead-Free Solder Alloy SnCuAg

    Get PDF
    Ternary Sn88Ag5Cu7, Sn93Ag4Cu3, Sn58Ag18Cu24, Sn78Ag16Cu6, Sn90Ag4Cu6, Sn87Ag4Cu9 alloy nanowires were produced at various values of deposition potential by dc electrodeposition on highly ordered porous anodic alumina oxide (AAO) templates. During the deposition process some parameters, such as ion content, deposition time, pH, and temperature of the solution, were kept constant. The diameter and length of regular Sn93Ag4Cu3 nanowires electrodeposited at −1 V were determined by scanning electron microscopy (SEM) to be approximately 200–250 nm and 7-8 μm, respectively. Differential scanning calorimetry (DSC) results indicate that the melting onset temperature of Sn93Ag4Cu3 nanowires is about 204°C

    Energy dependence of the saturation scale and the charged multiplicity in pp and AA collisions

    Full text link
    A natural framework to understand the energy dependence of bulk observables from lower energy experiments to the LHC is provided by the Color Glass Condensate, which leads to a "geometrical scaling" in terms of an energy dependent saturation scale Q_s. The measured charged multiplicity, however, seems to grow faster (~\sqrt{s}^0.3) in nucleus-nucleus collisions than it does for protons (~\sqrt{s}^0.2), violating the expectation from geometric scaling. We argue that this difference between pp and AA collisions can be understood from the effect of DGLAP evolution on the value of the saturation scale, and is consistent with gluon saturation observations at HERA.Comment: RevTeX, 8 pages, 4 figures. V2: modified discussion of fragmentation, published in EPJ

    Colliding AdS gravitational shock waves in various dimensions and holography

    Full text link
    The formation of marginally trapped surfaces in the off-center collision of two shock waves on AdS_D (with D=4,5,6,7 and 8) is studied numerically. We focus on the case when the two waves collide with nonvanishing impact parameter while the sources are located at the same value of the holographic coordinate. In all cases a critical value of the impact parameter is found above which no trapped surface is formed. The numerical results show the existence of a simple scaling relation between the critical impact parameter and the energy of the colliding waves. Using the isometries of AdS_D we relate the solutions obtained to the ones describing the collision of two waves with a purely holographic impact parameter. This provides a gravitational dual for the head-on collision of two lumps of energy of unequal size.Comment: 25 pages, 11 figures. v2: minor changes, typos corrected. To appear in JHE

    Spin Relaxation in Single Layer Graphene with Tunable Mobility

    Full text link
    Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure

    Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature

    Get PDF
    Graphene has emerged as the foremost material for future two-dimensional spintronics due to its tuneable electronic properties. In graphene, spin information can be transported over long distances and, in principle, be manipulated by using magnetic correlations or large spin-orbit coupling (SOC) induced by proximity effects. In particular, a dramatic SOC enhancement has been predicted when interfacing graphene with a semiconducting transition metal dechalcogenide, such as tungsten disulphide (WS2_2). Signatures of such an enhancement have recently been reported but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and WS2_2. By using out-of-plane spin precession, we show that the spin lifetime is largest when the spins point out of the graphene plane. Moreover, we observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, indicating that the strong spin-valley coupling in WS2_2 is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials
    corecore