69 research outputs found

    A Data Augmentation Approach for Sign-Language-To-Text Translation In-The-Wild

    Get PDF
    In this paper, we describe the current main approaches to sign language translation which use deep neural networks with videos as input and text as output. We highlight that, under our point of view, their main weakness is the lack of generalization in daily life contexts. Our goal is to build a state-of-the-art system for the automatic interpretation of sign language in unpredictable video framing conditions. Our main contribution is the shift from image features to landmark positions in order to diminish the size of the input data and facilitate the combination of data augmentation techniques for landmarks. We describe the set of hypotheses to build such a system and the list of experiments that will lead us to their verification

    Comparative Quality Estimation for Machine Translation. An Application of Artificial Intelligence on Language Technology using Machine Learning of Human Preferences

    Get PDF
    In this thesis we focus on Comparative Quality Estimation, as the automaticprocess of analysing two or more translations produced by a Machine Translation(MT) system and expressing a judgment about their comparison. We approach theproblem from a supervised machine learning perspective, with the aim to learnfrom human preferences. As a result, we create the ranking mechanism, a pipelinethat includes the necessary tasks for ordering several MT outputs of a givensource sentence in terms of relative quality. Quality Estimation models are trained to statistically associate the judgmentswith some qualitative features. For this purpose, we design a broad set offeatures with a particular focus on the ones with a grammatical background.Through an iterative feature engineering process, we investigate several featuresets, we conclude to the ones that achieve the best performance and we proceedto linguistically intuitive observations about the contribution of individualfeatures. Additionally, we employ several feature selection and machine learning methodsto take advantage of these features. We suggest the usage of binary classifiersafter decomposing the ranking into pairwise decisions. In order to reduce theamount of uncertain decisions (ties) we weight the pairwise decisions with theirclassification probability. Through a set of experiments, we show that the ranking mechanism can learn andreproduce rankings that correlate to the ones given by humans. Most importantly,it can be successfully compared with state-of-the-art reference-aware metricsand other known ranking methods for several language pairs. We also apply thismethod for a hybrid MT system combination and we show that it is able to improvethe overall translation performance. Finally, we examine the correlation between common MT errors and decoding eventsof the phrase-based statistical MT systems. Through evidence from the decodingprocess, we identify some cases where long-distance grammatical phenomena cannotbe captured properly. An additional outcome of this thesis is the open source software Qualitative,which implements the full pipeline of ranking mechanism and the systemcombination task. It integrates a multitude of state-of-the-art natural languageprocessing tools and can support the development of new models. Apart from theusage in experiment pipelines, it can serve as an application back-end for webapplications in real-use scenaria.In dieser Promotionsarbeit konzentrieren wir uns auf die vergleichende Qualitätsschätzung der Maschinellen Übersetzung als ein automatisches Verfahren zur Analyse von zwei oder mehr Übersetzungen, die von Maschinenübersetzungssysteme erzeugt wurden, und zur Beurteilung von deren Vergleich. Wir gehen an das Problem aus der Perspektive des überwachten maschinellen Lernens heran, mit dem Ziel, von menschlichen Präferenzen zu lernen. Als Ergebnis erstellen wir einen Ranking-Mechanismus. Dabei handelt es sich um eine Pipeline, welche die notwendigen Arbeitsschritte für die Anordnung mehrerer Maschinenübersetzungen eines bestimmten Quellsatzes in Bezug auf die relative Qualität umfasst. Qualitätsschätzungsmodelle werden so trainiert, dass Vergleichsurteile mit einigen bestimmten Merkmalen statistisch verknüpft werden. Zu diesem Zweck konzipieren wir eine breite Palette von Merkmalen mit besonderem Fokus auf diejenigen mit einem grammatikalischen Hintergrund. Mit Hilfe eines iterativen Verfahrens der Merkmalskonstruktion untersuchen wir verschiedene Merkmalsreihen, erschließen diejenigen, die die beste Leistung erzielen, und leiten linguistisch motivierte Beobachtungen über die Beiträge der einzelnen Merkmale ab. Zusätzlich setzen wir verschiedene Methoden des maschinellen Lernens und der Merkmalsauswahl ein, um die Vorteile dieser Merkmale zu nutzen. Wir schlagen die Verwendung von binären Klassifikatoren nach Zerlegen des Rankings in paarweise Entscheidungen vor. Um die Anzahl der unklaren Entscheidungen (Unentschieden) zu verringern, gewichten wir die paarweisen Entscheidungen mit deren Klassifikationswahrscheinlichkeit. Mithilfe einer Reihe von Experimenten zeigen wir, dass der Ranking-Mechanismus Rankings lernen und reproduzieren kann, die mit denen von Menschen übereinstimmen. Die wichtigste Erkenntnis ist, dass der Mechanismus erfolgreich mit referenzbasierten Metriken und anderen bekannten Ranking-Methoden auf dem neusten Stand der Technik für verschiedene Sprachpaare verglichen werden kann. Diese Methode verwenden wir ebenfalls für eine hybride Systemkombination maschineller Übersetzer und zeigen, dass sie in der Lage ist, die gesamte Übersetzungsleistung zu verbessern. Abschließend untersuchen wir den Zusammenhang zwischen häufig vorkommenden Fehlern der maschinellen Übersetzung und Vorgängen, die während des internen Dekodierungsverfahrens der phrasenbasierten statistischen Maschinenübersetzungssysteme ablaufen. Durch Beweise aus dem Dekodierungsverfahren können wir einige Fälle identifizieren, in denen grammatikalische Phänomene mit Fernabhängigkeit nicht richtig erfasst werden können. Ein weiteres Ergebnis dieser Arbeit ist die quelloffene Software ``Qualitative'', welche die volle Pipeline des Ranking-Mechanismus und das System für die Kombinationsaufgabe implementiert. Die Software integriert eine Vielzahl modernster Softwaretools für die Verarbeitung natürlicher Sprache und kann die Entwicklung neuer Modelle unterstützen. Sie kann sowohl in Experimentierpipelines als auch als Anwendungs-Backend in realen Nutzungsszenarien verwendet werden

    Optimisation and Computational Methods to Model the Oculomotor System with Focus on Nystagmus

    Get PDF
    Open access. Use it freely but cite it.Infantile nystagmus is a condition that causes involuntary, bilateral and conjugate oscillations of the eyes, which are predominately restricted to the horizontal plane. In order to investigate the cause of nystagmus, computational models and nonlinear dynamics techniques have been used to model and analyse the oculomotor system. Computational models are important in making predictions and creating a quantitative framework for the analysis of the oculomotor system. Parameter estimation is a critical step in the construction and analysis of these models. A preliminary parameter estimation of a nonlinear dynamics model proposed by Broomhead et al. [1] has been shown to be able to simulate both normal rapid eye movements (i.e. saccades) and nystagmus oscillations. The application of nonlinear analysis to experimental jerk nystagmus recordings, has shown that the local dimensions number of the oscillation varies across the phase angle of the nystagmus cycle. It has been hypothesised that this is due to the impact of signal dependent noise (SDN) on the neural commands in the oculomotor system. The main aims of this study were: (i) to develop parameter estimation methods for the Broomhead et al. [1] model in order to explore its predictive capacity by fitting it to experimental recordings of nystagmus waveforms and saccades; (ii) to develop a stochastic oculomotor model and examine the hypothesis that noise on the neural commands could be the cause of the behavioural characteristics measured from experimental nystagmus time series using nonlinear analysis techniques. In this work, two parameter estimation methods were developed, one for fitting the model to the experimental nystagmus waveforms and one to saccades. By using the former method, we successfully fitted the model to experimental nystagmus waveforms. This fit allowed to find the specific parameter values that set the model to generate these waveforms. The types of the waveforms that we successfully fitted were asymmetric pseudo-cycloid, jerk and jerk with extended foveation. The fit of other types of nystagmus waveforms were not examined in this work. Moreover, the results showed which waveforms the model can generate almost perfectly and the waveform characteristics of a number of jerk waveforms which it cannot exactly generate. These characteristics were on a specific type of jerk nystagmus waveforms with a very extreme fast phase. The latter parameter estimation method allowed us to explore whether the model can generate horizontal saccades of different amplitudes with the same behaviour as observed experimentally. The results suggest that the model can generate the experimental saccadic velocity profiles of different saccadic amplitudes. However, the results show that best fittings of the model to the experimental data are when different model parameter values were used for different saccadic amplitude. Our parameter estimation methods are based on multi-objective genetic algorithms (MOGA), which have the advantage of optimising biological models with a multi-objective, high-dimensional and complex search space. However, the integration of these models, for a wide range of parameter combinations, is very computationally intensive for a single central processing unit (CPU). To overcome this obstacle, we accelerated the parameter estimation method by utilising the parallel capabilities of a graphics processing unit (GPU). Depending of the GPU model, this could provide a speedup of 30 compared to a midrange CPU. The stochastic model that we developed is based on the Broomhead et al. [1] model, with signal dependent noise (SDN) and constant noise (CN) added to the neural commands. We fitted the stochastic model to saccades and jerk nystagmus waveforms. It was found that SDN and CN can cause similar variability to the local dimensions number of the oscillation as found in the experimental jerk nystagmus waveforms and in the case of saccade generation the saccadic variability recorded experimentally. However, there are small differences in the simulated behaviour compared to the nystagmus experimental data. We hypothesise that these could be caused by the inability of the model to simulate exactly key jerk waveform characteristics. Moreover, the differences between the simulations and the experimental nystagmus waveforms indicate that the proposed model requires further expansion, and this could include other oculomotor subsystem(s).Engineering and Physical Sciences Research Council (EPSRC

    Linguistic evaluation of German-English Machine Translation using a Test Suite

    Full text link
    We present the results of the application of a grammatical test suite for German\rightarrowEnglish MT on the systems submitted at WMT19, with a detailed analysis for 107 phenomena organized in 14 categories. The systems still translate wrong one out of four test items in average. Low performance is indicated for idioms, modals, pseudo-clefts, multi-word expressions and verb valency. When compared to last year, there has been a improvement of function words, non-verbal agreement and punctuation. More detailed conclusions about particular systems and phenomena are also presented
    corecore