22 research outputs found

    Sefer Ṿa-yosef Avraham : ṿe-hu teshuvot /

    No full text
    BSLW YIVOL Clean-up ProjectLSHThis book is from the private library of Mattityahu Strashun.Digital imag

    Effect of Opioid Receptor Activation and Blockage on the Progression and Response to Treatment of Head and Neck Squamous Cell Carcinoma

    No full text
    Recent studies suggest that opioids have a role in the progression of HNSCC mediated by mu opioid receptors (MOR), however, the effects of their activation or blockage remains unclear. Expression of MOR-1 was explored in seven HNSCC cell lines using Western blotting (WB). XTT cell proliferation and cell migration assays were performed on four selected cell lines (Cal-33, FaDu, HSC-2, and HSC-3), treated with opiate receptor agonist (morphine), antagonist (naloxone), alone and combined with cisplatin. All four selected cell lines display an increased cell proliferation and upregulation of MOR-1 when exposed to morphine. Furthermore, morphine promotes cell migration, while naloxone inhibits it. The effects on cell signaling pathways were analyzed using WB, demonstrating morphine activation of AKT and S6, key proteins in the PI3K/AKT/mTOR axis. A significant synergistic cytotoxic effect between cisplatin and naloxone in all cell lines is observed. In vivo studies of nude mice harboring HSC3 tumor treated with naloxone demonstrate a decrease in tumor volume. The synergistic cytotoxic effect between cisplatin and naloxone is observed in the in vivo studies as well. Our findings suggest that opioids may increase HNSCC cell proliferation via the activation of the PI3K/Akt/mTOR signaling pathway. Moreover, MOR blockage may chemo-sensitize HNSCC to cisplatin

    CDK 4/6 Inhibition Overcomes Acquired and Inherent Resistance to PI3Kα Inhibition in Pre-Clinical Models of Head and Neck Squamous Cell Carcinoma

    No full text
    Activating alterations in PIK3CA, the gene coding for the catalytic subunit of phosphoinositide-3-kinase (PI3K), are prevalent in head and neck squamous cell carcinoma (HNSCC) and thought to be one of the main drivers of these tumors. However, early clinical trials on PI3K inhibitors (PI3Ki) have been disappointing due to the limited durability of the activity of these drugs. To investigate the resistance mechanisms to PI3Ki and attempt to overcome them, we conducted a molecular-based study using both HNSCC cell lines and patient-derived xenografts (PDXs). We sought to simulate and dissect the molecular pathways that come into play in PIK3CA-altered HNSCC treated with isoform-specific PI3Ki (BYL719, GDC0032). In vitro assays of cell viability and protein expression indicate that activation of the mTOR and cyclin D1 pathways is associated with resistance to PI3Ki. Specifically, in BYL719-resistant cells, BYL719 treatment did not induce pS6 and pRB inhibition as detected in BYL719-sensitive cells. By combining PI3Ki with either mammalian target of rapamycin complex 1 (mTORC1) or cyclin D1 kinase (CDK) 4/6 specific inhibitors (RAD001 and abemaciclib, respectively), we were able to overcome the acquired resistance. Furthermore, we found that PI3Ki and CDK 4/6 inhibitors have a synergistic anti-tumor effect when combined in human papillomavirus (HPV)-negative/PIK3CA-WT tumors. These findings provide a rationale for combining PI3Ki and CDK 4/6 inhibitors to enhance anti-tumor efficacy in HNSCC patients

    Potential neurotoxicity of titanium implants: Prospective, in-vivo and in-vitro study

    No full text
    International audienceTitanium dioxide (TiO2) is a frequently used biomaterial, particularly in orthopedic and dental implants, and it is considered an inert and benign compound. This has resulted in toxicological scrutiny for TiO2 in the past decade, with numerus studies showing potential pathologic downstream effects. Herein we describe case report of a 77-year-old male with subacute CNS dysfunction, secondary to breakdown of a titanium-based carotid stent and leading to blood levels 1000 times higher (3 ppm) than the reported normal. We prospectively collected tissues adjacent to orthopedic implants and found a positive correlation between titanium concentration and time of implant in the body (r = 0.67, p < 0.02). Rats bearing titanium implants or intravascularly treated with TiO2 nanoparticles (TiNP) exhibited memory impairments. A human blood-brain barrier (BBB) in-vitro model exposed to TiNP showed paracellular leakiness, which was corroborated in-vivo with the decrease of key BBB transcripts in isolated blood vessels from hippocampi harvested from TiNP-treated mice. Titanium particles rapidly internalized into brain-like endothelial cells via caveolae-mediated endocytosis and macropinocytosis and induced pro-inflammatory reaction with increased expression of pro-inflammatory genes and proteins. Immune reaction was mediated partially by IL-1R and IL-6. In summary, we show that high levels of titanium accumulate in humans adjacent to orthopedic implants, and our in-vivo and in-vitro studies suggest it may be neurotoxic
    corecore