23 research outputs found

    Semaphorin-4D (Sema-4D), the Plexin-B1 ligand, is involved in mouse ovary follicular development

    Get PDF
    BACKGROUND: Human Plexin-B1 is expressed in two truncated forms. The long form encodes a trans-membranal protein, while the short form, which is bound to the cell surface and partially secreted, possibly serves as a decoy receptor. Plexin receptors are trans-membrane proteins. The sema domain, found in the extracellular region, is common to all plexins, semaphorins, and the scatter factor receptors and is crucial for the biological activity and plexin receptor specificity. Semaphorin-4D/Plexin-B1 binding provides attractive and repulsive cues for the navigation of axonal growth cones, and new studies suggest that this system also plays a role in the regulation of the biological functions of endothelial cells, specifically in the control of angiogenesis. In a previous study, we have demonstrated the expression and possible role of Plexin-B1 in the mouse ovary. The present study was designed to test the hypothesis that Plexin-B1 effects are mediated by Semaphorin-4D. METHODS: In vivo expression and localization of mouse ovarian Sema-4D were tested by immunohisto-chemistry. The role of Sema-4D in follicular development was examined by in vitro growth of preantral follicles in the presence or absence of Semaphorin-4D, with or without neutralizing antibodies against Plexin-B1. Follicular growth and steroid hormone secretion rates were tested. RESULTS: Semaphorin-4D is expressed in the mouse ovary in vivo mostly in the granulosa cells and and its expression is modulated by PMSG and hCG. In the presence of Semaphorin-4D, in-vitro constant growth was observed as indicated by follicular diameter during the culture period and elevated steroid hormone secretion rates compared with control. These effects were abolished after addition of neutralizing antibodies against Plexin-B1. CONCLUSION: In the ovarian follicle, the effect of Plexin-B1 is mediated by sema-4D

    CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq

    Get PDF
    Single-cell transcriptomics requires a method that is sensitive, accurate, and reproducible. Here, we present CEL-Seq2, a modified version of our CEL-Seq method, with threefold higher sensitivity, lower costs, and less hands-on time. We implemented CEL-Seq2 on Fluidigm’s C1 system, providing its first single-cell, on-chip barcoding method, and we detected gene expression changes accompanying the progression through the cell cycle in mouse fibroblast cells. We also compare with Smart-Seq to demonstrate CEL-Seq2’s increased sensitivity relative to other available methods. Collectively, the improvements make CEL-Seq2 uniquely suited to single-cell RNA-Seq analysis in terms of economics, resolution, and ease of use.Seventh Framework Programme (European Commission)Israel Science Foundatio

    Systematic Dissection of Roles for Chromatin Regulators in a Yeast Stress Response

    Get PDF
    Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants) and enzymes (chromatin modifier deletions) we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the “activating” mark H3K4me3 in gene repression

    Semaphorin-4D (Sema-4D), the Plexin-B1 ligand, is involved in mouse ovary follicular development

    No full text
    Abstract Background Human Plexin-B1 is expressed in two truncated forms. The long form encodes a trans-membranal protein, while the short form, which is bound to the cell surface and partially secreted, possibly serves as a decoy receptor. Plexin receptors are trans-membrane proteins. The sema domain, found in the extracellular region, is common to all plexins, semaphorins, and the scatter factor receptors and is crucial for the biological activity and plexin receptor specificity. Semaphorin-4D/Plexin-B1 binding provides attractive and repulsive cues for the navigation of axonal growth cones, and new studies suggest that this system also plays a role in the regulation of the biological functions of endothelial cells, specifically in the control of angiogenesis. In a previous study, we have demonstrated the expression and possible role of Plexin-B1 in the mouse ovary. The present study was designed to test the hypothesis that Plexin-B1 effects are mediated by Semaphorin-4D. Methods In vivo expression and localization of mouse ovarian Sema-4D were tested by immunohisto-chemistry. The role of Sema-4D in follicular development was examined by in vitro growth of preantral follicles in the presence or absence of Semaphorin-4D, with or without neutralizing antibodies against Plexin-B1. Follicular growth and steroid hormone secretion rates were tested. Results Semaphorin-4D is expressed in the mouse ovary in vivo mostly in the granulosa cells and and its expression is modulated by PMSG and hCG. In the presence of Semaphorin-4D, in-vitro constant growth was observed as indicated by follicular diameter during the culture period and elevated steroid hormone secretion rates compared with control. These effects were abolished after addition of neutralizing antibodies against Plexin-B1. Conclusion In the ovarian follicle, the effect of Plexin-B1 is mediated by sema-4D.</p

    A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation

    Get PDF
    Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of replicating cells in their in vivo niche

    Additional file 1: Figure S1. of CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq

    No full text
    Optimization of the CEL-Seq protocol. A Number of genes obtained from ten replicates of 100 pg RNA performed with each type of primer: the original primer, the original primer with the inclusion of UMI, and the shortened UMI primer. B Number of transcripts identified for the two primers containing a UMI. C Estimating the efficiency of CEL-Seq using UMIs and ERCC spike-ins. The efficiency is computed as the y-intercept. D Side-by-side comparison of column clean-up, bead clean-up, and two RTs relative to CEL-Seq with a UMI primer. E Side-by-side comparison of different second-strand synthesis enzymes. The MessageAmp II enzyme was the one used originally. (PDF 519 kb
    corecore