199 research outputs found

    Sequence data reflect the introduction pathways of the Sirex woodwasp parasitoid, Ibalia leucospoides (Ibaliidae, Hymenoptera)

    Get PDF
    The parasitoid wasp Ibalia leucospoides is native to the northern hemisphere and has been introduced to the southern hemisphere as a biological control agent for the invasive woodwasp Sirex noctilio. Two subspecies of the parasitoid, Ibalia leucospoides leucospoides (Palearctic distribution) and Ibalia leucospoides ensiger (Nearctic distribution), were introduced and are reported to have hybridized. Despite extensive records of the numbers and origins of the wasps imported into the southern hemisphere, nothing is known regarding their current population diversity. We investigated the genetic variation of I. leucospoides in its native and introduced ranges using mitochondrial (COI) and nuclear (ITS) markers. Mitochondrial DNA diversity in the introduced range was limited, with only five haplotypes, although sequence divergence between these haplotypes was high. Similarly, the ITS rDNA sequences revealed multiple clades present in the introduced range. These results reflect introductions from a wide geographical range but where genetic bottlenecks have possibly reduced the genetic diversity. The data further reflect the origin of the I. leucospoides populations in South America and South Africa from New Zealand or Australia. We found no evidence of hybridization between the two subspecies of the parasitoid in its introduced range, and no evidence that I. leucospoides ensiger has established outside its native range.Forestry South Africa (FSA), the Department of Water Affairs and Forestry, the University of Pretoria and the THRIP initiative of the Department of Trade and Industry (DTI), South Africa.https://onlinelibrary.wiley.com/journal/146195632020-12-16hj2020BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyZoology and Entomolog

    Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic-Mediterranean divide

    Get PDF
    The Strait of Gibraltar has been proposed to be the divide between two marine biogeographical regions, the Mediterranean Sea and the Northeast Atlantic. Intraspecific studies have shown, for several of the examined species, a reduction of gene flow between the two basins. The present study examines genetic variation at nuclear and mitochondrial loci in five marine teleost species belonging to the family Sparidae. Four samples for each species were analysed spanning the Northeast Atlantic and the Mediterranean. For all individuals 17 allozyme loci were scored and a combined single strand conformation polymorphism-sequencing approach was used to survey approximately 190 bp of the mitochondrial DNA (mtDNA) D-loop region. All five species share similar biological features. For three species, namely Lithognathus mormyrus, Spondyliosoma cantharus, and Dentex dentex, large mtDNA divergence was observed between Atlantic and Mediterranean samples. Little or no mtDNA differentiation was found in the other two species, Pagrus pagrus and Pagellus bogaraveo. Allozyme data revealed strong differentiation when comparing Atlantic and Mediterranean samples of L. mormyrus and D. dentex, moderate for P. pagrus, and no differentiation for P. bogaraveo and S. cantharus. These results provide evidence for a sharp phylogeographical break (sensu Avise) between the Atlantic and the Mediterranean for two (or possibly three) sparid species of the five investigated. At the same time, the obtained results for the other two species raise the question on which ecological/historical factors might have caused the observed discrepancy in the geographical distribution of genetic variation among otherwise biologically similar species.info:eu-repo/semantics/publishedVersio

    Recent African derivation of Chrysomya putoria from C. chloropyga and mitochondrial DNA paraphyly of cytochrome oxidase subunit one in blowflies of forensic importance

    Get PDF
    Chrysomya chloropyga (Wiedemann) and C. putoria (Wiedemann) (Diptera: Calliphoridae) are closely related Afrotropical blowflies that breed in carrion and latrines, reaching high density in association with humans and spreading to other continents. In some cases of human death, Chyrsomya specimens provide forensic clues. Because the immature stages of such flies are often difficult to identify taxonomically, it is useful to develop DNA-based tests for specimen identification. Therefore we attempted to distinguish between C. chloropyga and C. putoria using mitochondrial DNA (mtDNA) sequence data from a 593-bp region of the gene for cytochrome oxidase subunit one (COI). Twelve specimens from each species yielded a total of five haplotypes, none being unique to C. putoria. Therefore it was not possible to distinguish between the two species using this locus. Maximum parsimony analysis indicated paraphyletic C. chloropyga mtDNA with C. putoria nested therein. Based on these and previously published data, we infer that C. putoria diverged very recently from C. chloropyga

    Discovery of a morphologically and genetically distinct population of Black-tailed Godwits in the East Asian-Australasian Flyway

    Get PDF
    Occurring across Eurasia, the Black-tailed GodwitLimosa limosahas three recognized subspecies,melanuroides,limosaandislandicafrom east to west, respectively. With the smallest body size,melanuroideshas been considered the only subspecies in the East Asian-Australasian Flyway. Yet, observations along the Chinese coast indicated the presence of distinctively large individuals. Here we compared the morphometrics of these larger birds captured in northern Bohai Bay, China, with those of the three known subspecies and explore the genetic population structuring of Black-tailed Godwits based on the control region of the mitochondrial genome (mtDNA). We found that the Bohai Godwits were indeed significantly larger thanmelanuroides, resemblinglimosamore thanislandica, but with relatively longer bills thanislandica. The level of genetic differentiation between Bohai Godwits and the three recognized subspecies was of similar magnitude to the differentiation among previously recognized subspecies. Based on these segregating morphological and genetic characteristics, we propose that these birds belong to a distinct population, which may be treated and described as a new subspecies

    Genetic divergence in mitochondrial DNA of Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia

    Get PDF
    In the present study, we have examined the variability in Anopheles nuneztovari mitochondrial DNA of three populations from the Brazilian Amazon and one from western Colombia (Sitronela), using four restriction endonucleases (BclI, ClaI, HindIII, SstI). The haplotype diversity (h) was slightly elevated in all populations (0.5000 to 0.6765), whereas the nucleotide diversity (π) was lower in the Sitronela population (0.0029) and higher in populations from the Brazilian Amazon (0.0056 to 0.0098). The degree of sequence divergence (ÎŽ) estimated within the Brazilian Amazon and that in Sitronela (0.0329 to 0.0371) suggests that these geographic populations of A. nuneztovari may eventually constitute separate species. The low sequence divergence values among the three Brazilian Amazon populations (0.0012 to 0.0031) indicate that these populations are genetically similar. These results are consistent with those recently reported for allozymes of these same populations
    • 

    corecore