1,497 research outputs found

    Complementary vertices and adjacency testing in polytopes

    Full text link
    Our main theoretical result is that, if a simple polytope has a pair of complementary vertices (i.e., two vertices with no facets in common), then it has at least two such pairs, which can be chosen to be disjoint. Using this result, we improve adjacency testing for vertices in both simple and non-simple polytopes: given a polytope in the standard form {x \in R^n | Ax = b and x \geq 0} and a list of its V vertices, we describe an O(n) test to identify whether any two given vertices are adjacent. For simple polytopes this test is perfect; for non-simple polytopes it may be indeterminate, and instead acts as a filter to identify non-adjacent pairs. Our test requires an O(n^2 V + n V^2) precomputation, which is acceptable in settings such as all-pairs adjacency testing. These results improve upon the more general O(nV) combinatorial and O(n^3) algebraic adjacency tests from the literature.Comment: 14 pages, 5 figures. v1: published in COCOON 2012. v2: full journal version, which strengthens and extends the results in Section 2 (see p1 of the paper for details

    Efficient Enumeration of Induced Subtrees in a K-Degenerate Graph

    Full text link
    In this paper, we address the problem of enumerating all induced subtrees in an input k-degenerate graph, where an induced subtree is an acyclic and connected induced subgraph. A graph G = (V, E) is a k-degenerate graph if for any its induced subgraph has a vertex whose degree is less than or equal to k, and many real-world graphs have small degeneracies, or very close to small degeneracies. Although, the studies are on subgraphs enumeration, such as trees, paths, and matchings, but the problem addresses the subgraph enumeration, such as enumeration of subgraphs that are trees. Their induced subgraph versions have not been studied well. One of few example is for chordless paths and cycles. Our motivation is to reduce the time complexity close to O(1) for each solution. This type of optimal algorithms are proposed many subgraph classes such as trees, and spanning trees. Induced subtrees are fundamental object thus it should be studied deeply and there possibly exist some efficient algorithms. Our algorithm utilizes nice properties of k-degeneracy to state an effective amortized analysis. As a result, the time complexity is reduced to O(k) time per induced subtree. The problem is solved in constant time for each in planar graphs, as a corollary

    Nonlocality as a Benchmark for Universal Quantum Computation in Ising Anyon Topological Quantum Computers

    Get PDF
    An obstacle affecting any proposal for a topological quantum computer based on Ising anyons is that quasiparticle braiding can only implement a finite (non-universal) set of quantum operations. The computational power of this restricted set of operations (often called stabilizer operations) has been studied in quantum information theory, and it is known that no quantum-computational advantage can be obtained without the help of an additional non-stabilizer operation. Similarly, a bipartite two-qubit system based on Ising anyons cannot exhibit non-locality (in the sense of violating a Bell inequality) when only topologically protected stabilizer operations are performed. To produce correlations that cannot be described by a local hidden variable model again requires the use of a non-stabilizer operation. Using geometric techniques, we relate the sets of operations that enable universal quantum computing (UQC) with those that enable violation of a Bell inequality. Motivated by the fact that non-stabilizer operations are expected to be highly imperfect, our aim is to provide a benchmark for identifying UQC-enabling operations that is both experimentally practical and conceptually simple. We show that any (noisy) single-qubit non-stabilizer operation that, together with perfect stabilizer operations, enables violation of the simplest two-qubit Bell inequality can also be used to enable UQC. This benchmarking requires finding the expectation values of two distinct Pauli measurements on each qubit of a bipartite system.Comment: 12 pages, 2 figure

    On the Relationship between Convex Bodies Related to Correlation Experiments with Dichotomic Observables

    Get PDF
    In this paper we explore further the connections between convex bodies related to quantum correlation experiments with dichotomic variables and related bodies studied in combinatorial optimization, especially cut polyhedra. Such a relationship was established in Avis, Imai, Ito and Sasaki (2005 J. Phys. A: Math. Gen. 38 10971-87) with respect to Bell inequalities. We show that several well known bodies related to cut polyhedra are equivalent to bodies such as those defined by Tsirelson (1993 Hadronic J. S. 8 329-45) to represent hidden deterministic behaviors, quantum behaviors, and no-signalling behaviors. Among other things, our results allow a unique representation of these bodies, give a necessary condition for vertices of the no-signalling polytope, and give a method for bounding the quantum violation of Bell inequalities by means of a body that contains the set of quantum behaviors. Optimization over this latter body may be performed efficiently by semidefinite programming. In the second part of the paper we apply these results to the study of classical correlation functions. We provide a complete list of tight inequalities for the two party case with (m,n) dichotomic observables when m=4,n=4 and when min{m,n}<=3, and give a new general family of correlation inequalities.Comment: 17 pages, 2 figure

    Quantisation of Conformal Fields in Three-dimensional Anti-de Sitter Black Hole Spacetime

    Full text link
    Utilizing the conformal-flatness nature of 3-dim. Anti-de Sitter (AdS_3) black hole solution of Banados, Teitelboim and Zanelli, the quantisation of conformally-coupled scalar and spinor fields in this background spacetime is explicitly carried out. In particular, mode expansion forms and propagators of the fields are obtained in closed forms. The vacuum in this conformally-coupled field theories in AdS_3 black hole spacetime, which is conformally-flat, is the conformal vacuum which is unique and has global meaning. This point particularly suggests that now the particle production by AdS_3 black hole spacetime should be absent. General argument establishing the absence of real particle creation by AdS_3 black hole spacetime for this case of conformal triviality is provided. Then next, using the explicit mode expansion forms for conformally-coupled scalar and spinor fields, the bosonic and fermionic superradiances are examined and found to be absent confirming the expectation.Comment: 51 pages, Revtex, version to appear in Int. J. Mod. Phys.

    A history of the English concept of poetic

    Get PDF
    Call number: LD2668 .T4 1933 D6

    Noise Thresholds for Higher Dimensional Systems using the Discrete Wigner Function

    Full text link
    For a quantum computer acting on d-dimensional systems, we analyze the computational power of circuits wherein stabilizer operations are perfect and we allow access to imperfect non-stabilizer states or operations. If the noise rate affecting the non-stabilizer resource is sufficiently high, then these states and operations can become simulable in the sense of the Gottesman-Knill theorem, reducing the overall power of the circuit to no better than classical. In this paper we find the depolarizing noise rate at which this happens, and consequently the most robust non-stabilizer states and non-Clifford gates. In doing so, we make use of the discrete Wigner function and derive facets of the so-called qudit Clifford polytope i.e. the inequalities defining the convex hull of all qudit Clifford gates. Our results for robust states are provably optimal. For robust gates we find a critical noise rate that, as dimension increases, rapidly approaches the the theoretical optimum of 100%. Some connections with the question of qudit magic state distillation are discussed.Comment: 14 pages, 1 table; Minor changes vs. version

    Quantum correlations in the temporal CHSH scenario

    Full text link
    We consider a temporal version of the CHSH scenario using projective measurements on a single quantum system. It is known that quantum correlations in this scenario are fundamentally more general than correlations obtainable with the assumptions of macroscopic realism and non-invasive measurements. In this work, we also educe some fundamental limitations of these quantum correlations. One result is that a set of correlators can appear in the temporal CHSH scenario if and only if it can appear in the usual spatial CHSH scenario. In particular, we derive the validity of the Tsirelson bound and the impossibility of PR-box behavior. The strength of possible signaling also turns out to be surprisingly limited, giving a maximal communication capacity of approximately 0.32 bits. We also find a temporal version of Hardy's nonlocality paradox with a maximal quantum value of 1/4.Comment: corrected versio
    • …
    corecore