In this paper, we address the problem of enumerating all induced subtrees in
an input k-degenerate graph, where an induced subtree is an acyclic and
connected induced subgraph. A graph G = (V, E) is a k-degenerate graph if for
any its induced subgraph has a vertex whose degree is less than or equal to k,
and many real-world graphs have small degeneracies, or very close to small
degeneracies. Although, the studies are on subgraphs enumeration, such as
trees, paths, and matchings, but the problem addresses the subgraph
enumeration, such as enumeration of subgraphs that are trees. Their induced
subgraph versions have not been studied well. One of few example is for
chordless paths and cycles. Our motivation is to reduce the time complexity
close to O(1) for each solution. This type of optimal algorithms are proposed
many subgraph classes such as trees, and spanning trees. Induced subtrees are
fundamental object thus it should be studied deeply and there possibly exist
some efficient algorithms. Our algorithm utilizes nice properties of
k-degeneracy to state an effective amortized analysis. As a result, the time
complexity is reduced to O(k) time per induced subtree. The problem is solved
in constant time for each in planar graphs, as a corollary