16 research outputs found

    Janus kinase mutations in mice lacking PU.1 and Spi-B drive B cell leukemia through reactive oxygen species-induced DNA damage

    Get PDF
    Precursor B cell acute lymphoblastic leukemia (B-ALL) is caused by genetic lesions in developing B cells that function as drivers for the accumulation of additional mutations in an evolutionary selection process. We investigated secondary drivers of leukemogenesis in a mouse model of B-ALL driven by PU.1/Spi-B deletion (Mb1-CreΔPB). Whole-exome-sequencing analysis revealed recurrent mutations in Jak3 (encoding Janus kinase 3), Jak1, and Ikzf3 (encoding Aiolos). Mutations with a high variant-allele frequency (VAF) were dominated by C¡T transition mutations that were compatible with activation-induced cytidine deaminase, whereas the majority of mutations, with a low VAF, were dominated by C¡A transversions associated with 8-oxoguanine DNA damage caused by reactive oxygen species (ROS). The Janus kinase (JAK) inhibitor ruxolitinib delayed leukemia onset, reduced ROS and ROS-induced gene expression signatures, and altered ROS-induced mutational signatures. These results reveal that JAK mutations can alter the course of leukemia clonal evolution through ROS-induced DNA damage

    HNF4α Acts as Upstream Functional Regulator of Intestinal Wnt3 and Paneth Cell FateSummary

    No full text
    Background & Aims: The intestinal epithelium intrinsically renews itself ex vivo via the proliferation of Lgr5+ intestinal stem cells, which is sustained by the establishment of an epithelial stem cell niche. Differentiated Paneth cells are the main source of epithelial-derived niche factor supplies and produce Wnt3 as an essential factor in supporting Lgr5+ stem cell activity in the absence of redundant mesenchymal Wnts. Maturation of Paneth cells depends on canonical Wnt signaling, but few transcriptional regulators have been identified to this end. The role of HNF4α in intestinal epithelial cell differentiation is considered redundant with its paralog HNF4γ. However, it is unclear whether HNF4α alone controls intrinsic intestinal epithelial cell growth and fate in the absence of a mesenchymal niche. Methods: We used transcriptomic analyses to dissect the role of HNF4α in the maintenance of jejunal epithelial culture when cultured ex vivo as enteroids in the presence or absence of compensatory mesenchymal cells. Results: HNF4α plays a crucial role in supporting the growth and survival of jejunal enteroids. Transcriptomic analyses revealed an autonomous function of HNF4α in Wnt3 transcriptional regulation and Paneth cell differentiation. We showed that Wnt3a supplementation or co-culture with intestinal subepithelial mesenchymal cells reversed cell death and transcriptional changes caused by the deletion of Hnf4a in jejunal enteroids. Conclusions: Our results support the intrinsic epithelial role of HNF4α in regulating Paneth cell homeostasis and intestinal epithelium renewal in the absence of compensatory Wnt signaling

    An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes.

    No full text
    For many disease-causing virus species, global diversity is clustered into a taxonomy of subtypes with clinical significance. In particular, the classification of infections among the subtypes of human immunodeficiency virus type 1 (HIV-1) is a routine component of clinical management, and there are now many classification algorithms available for this purpose. Although several of these algorithms are similar in accuracy and speed, the majority are proprietary and require laboratories to transmit HIV-1 sequence data over the network to remote servers. This potentially exposes sensitive patient data to unauthorized access, and makes it impossible to determine how classifications are made and to maintain the data provenance of clinical bioinformatic workflows. We propose an open-source supervised and alignment-free subtyping method (Kameris) that operates on k-mer frequencies in HIV-1 sequences. We performed a detailed study of the accuracy and performance of subtype classification in comparison to four state-of-the-art programs. Based on our testing data set of manually curated real-world HIV-1 sequences (n = 2, 784), Kameris obtained an overall accuracy of 97%, which matches or exceeds all other tested software, with a processing rate of over 1,500 sequences per second. Furthermore, our fully standalone general-purpose software provides key advantages in terms of data security and privacy, transparency and reproducibility. Finally, we show that our method is readily adaptable to subtype classification of other viruses including dengue, influenza A, and hepatitis B and C virus

    Sanger and next generation sequencing in the characterisation of arbuscular mycorrhizal fungi (AMF) in Pancratium maritimum L. (Amaryllidaceae), a representative plant species of Mediterranean sand dunes

    No full text
    Main conclusion An interesting AMF colonization microcosm has been detected in the roots of Pancratium maritimum (sea daffodil). Both sequencing techniques (Sanger and NGS) have been used for AMF characterisation, showing a balanced trade-off between pros and cons. By Sanger and next generation sequencing of rRNA nuclear molecular markers (SSU–ITS–LSU and ITS2, respectively), the presence of AMF communities in the roots of P. maritimum was evaluated. Our results shed light on the presence of AMF in sea daffodil and the diversity of assemblages of AMF detected after Sanger sequencing of the SSU–ITS–LSU marker is much higher than that determined following NGS sequencing of ITS2 alone

    Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for Anti-Oomycete Drugs

    Get PDF
    Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.authorCount :6</authorCoun

    Health promotion based on assets: how to work with this perspective in local interventions?

    Get PDF
    An asset-based approach could be useful to revitalise health promotion or community health interventions combining work with multiple partnerships, positive health, community engagement, equity and orientation of health determinants. We set some recommendations about how to incorporate the assets model in programmes, projects and interventions in health promotion. Some techniques are described for assets mapping and some experiences with this methodology being developed in different regions are systematised. We propose the term "Asset-based Health Promotion/Community Health" as an operational definition to work at the local level with a community engagement and participatory approach, building alliances between different institutions at the state-regional level and trying to create a framework for action with the generation of evaluations and evidence to work on population interventions from the perspective of positive health. (C) 2016 SESPAS. Published by Elsevier Espana, S.L.U
    corecore