1,433 research outputs found

    Cosmography and constraints on the equation of state of the Universe in various parametrizations

    Get PDF
    We use cosmography to present constraints on the kinematics of the Universe, without postulating any underlying theoretical model. To this end, we use a Monte Carlo Markov Chain analysis to perform comparisons to the supernova Ia Union 2 compilation, combined with the Hubble Space Telescope measurements of the Hubble constant, and the Hubble parameter datasets. We introduce a sixth order cosmographic parameter and show that it does not enlarge considerably the posterior distribution when comparing to the fifth order results. We also propose a way to construct viable parameter variables to be used as alternatives of the redshift zz. These can overcome both the problems of divergence and lack of accuracy associated with the use of zz. Moreover, we show that it is possible to improve the numerical fits by re-parameterizing the cosmological distances. In addition, we constrain the equation of state of the Universe as a whole by the use of cosmography. Thus, we derive expressions which can be directly used to fit the equation of state and the pressure derivatives up to fourth order. To this end, it is necessary to depart from a pure cosmographic analysis and to assume the Friedmann equations as valid. All our results are consistent with the Λ\LambdaCDM model, although alternative fluid models, with nearly constant pressure and no cosmological constant, match the results accurately as well.Comment: 23 pages. 1 reference added. Minor correction

    The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2

    Full text link
    This study of SDSS0804 is primarily concerned with the double-hump shape in the light curve and its connection with the accretion disk in this bounce-back system. Time-resolved photometric and spectroscopic observations were obtained to analyze the behavior of the system between superoutbursts. A geometric model of a binary system containing a disk with two outer annuli spiral density waves was applied to explain the light curve and the Doppler tomography. Observations were carried out during 2008-2009, after the object's magnitude decreased to V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min periodicity, which is half of the orbital period of the system. In Sept. 2010, the system underwent yet another superoutburst and returned to its quiescent level by the beginning of 2012. This light curve once again showed a double-humps, but with a significantly smaller ~0.01mag amplitude. Other types of variability like a "mini-outburst" or SDSS1238-like features were not detected. Doppler tomograms, obtained from spectroscopic data during the same period of time, show a large accretion disk with uneven brightness, implying the presence of spiral waves. We constructed a geometric model of a bounce-back system containing two spiral density waves in the outer annuli of the disk to reproduce the observed light curves. The Doppler tomograms and the double-hump-shape light curves in quiescence can be explained by a model system containing a massive >0.7Msun white dwarf with a surface temperature of ~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli spirals. According to this model, the accretion disk should be large, extending to the 2:1 resonance radius, and cool (~2500K). The inner parts of the disk should be optically thin in the continuum or totally void.Comment: 12 pages, 15 figures, accepted for publication in A&

    Needle Tip Force Estimation using an OCT Fiber and a Fused convGRU-CNN Architecture

    Full text link
    Needle insertion is common during minimally invasive interventions such as biopsy or brachytherapy. During soft tissue needle insertion, forces acting at the needle tip cause tissue deformation and needle deflection. Accurate needle tip force measurement provides information on needle-tissue interaction and helps detecting and compensating potential misplacement. For this purpose we introduce an image-based needle tip force estimation method using an optical fiber imaging the deformation of an epoxy layer below the needle tip over time. For calibration and force estimation, we introduce a novel deep learning-based fused convolutional GRU-CNN model which effectively exploits the spatio-temporal data structure. The needle is easy to manufacture and our model achieves a mean absolute error of 1.76 +- 1.5 mN with a cross-correlation coefficient of 0.9996, clearly outperforming other methods. We test needles with different materials to demonstrate that the approach can be adapted for different sensitivities and force ranges. Furthermore, we validate our approach in an ex-vivo prostate needle insertion scenario.Comment: Accepted for Publication at MICCAI 201

    Suscetibilidade por via oral dos mosquitos Aedes albifasciatus e do complexo Culex pipiens (Diptera: Culicidae) da Argentina ao virus da encefalite eqüina tipo oeste

    Get PDF
    The transmission cycle of western equine encephalitis (WEE) virus in South America is unknown. A WEE virus strain was isolated from Aedes albifasciatus in Argentina during the WEE epizootic of 1982-83. Also, Culex pipiens from Argentina was reported to be able to transmit WEE virus experimentally, but other results indicate that Cx. pipiens from the USA is refractory to this virus. We determined the susceptibility of Argentina strains of Ae. albifasciatus and Culex pipiens complex mosquites to infection by WEE virus by the oral route. Adult females were fed on chicks infected with a WEE virus strain isolated in Cordoba Province, Argentina, or were fed on a blood/virus suspension. Each mosquito ingested between 10(1.6) to 10(6.4) vero cell plaque-forming units of virus. Each of 28 Ae. albifasciatus was positive for virus from the fourth day postfeeding, and there was evidence for virus replication. In contrast, 0/44 Cx. p. quinquefasciatus and only 1/15 Cx. p. pipiens was positive. Aedes albifasciatus is susceptible to infection by WEE virus and should be considered a potential vector of this virus in Argentina. Both subspecies of Cx. pipiens are refractory to peroral infection by WEE virus and probably do not play a role in the WEE virus cycle in Argentina.Desconhece-se o ciclo de transmissão da encefalite eqüina tipo oeste (WEE) na América do Sul. Uma cepa do vírus foi isolada na Argentina, durante a epizootia de 1982-1983, a partir de Aedes albifasciatus. Sob o ponto de vista experimental, o Culex pipiens da Argentina revelou-se capaz de transmitir o vírus WEE, porém outros resultados têm indicado que o Cx. pipiens dos Estados Unidos é refratário a esse vírus. Assim, procurou-se determinar a suscetibilidade de cepas argentinas de Ae. albifasciatus e complexo Culex pipiens, à infecção do vírus WEE por via oral. As fêmeas adultas foram alimentadas em pintos infectados com cepa do vírus isolada na Província de Córdoba, Argentina, ou então alimentadas em suspensão do vírus e sangue. Cada mosquito ingeriu entre 10(1,6) e 10(6,4) unidades virais formadoras de placas de cultura de célula ("vero cell"). Cada um dos 28 Ae. albifasciatus mostrou-se a partir do quarto dia pós-prandial e houve evidência de replicação viral. Em contraposição, 0/44 Cx. p. quinquefasciatus e apenas 1/15 Cx. p. pipiens revelou-se positivo. Aedes albifasciatus é suscetível à infecção pelo vírus WEE e deveria ser considerado vetor potencial desse agente na Argentina. Ambas subespécies de Cx. pipiens são refratárias à infecção por via oral e provavelmente não desempenham papel do ciclo do vírus WEE na Argentina

    Scaling differences between large interplate and intraplate earthquakes

    Get PDF
    A study of large intraplate earthquakes with well-determined source parameters shows that these earthquakes obey a scaling law similar to large interplate earthquakes, in which M_0 ∝ L^2 or u = αL, where L is rupture length and u is slip. In contrast to interplate earthquakes, for which α ≈ 1 × 10^(−5), for for the intraplate events α ≈ 6 × 10^(−5), which implies that these earthquakes have stress drops about 6 times higher than interplate events. This result is independent of focal mechanism type. This implies that intraplate faults have a higher frictional strength than do plate boundaries, and hence that faults are velocity or slip weakening in their behavior. This factor may be important in producing the concentrated deformation that creates and maintains plate boundaries
    corecore