31 research outputs found

    OP0291 TOFACITINIB FOR THE TREATMENT OF POLYARTICULAR COURSE JUVENILE IDIOPATHIC ARTHRITIS: RESULTS OF A PHASE 3, RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED WITHDRAWAL STUDY

    Get PDF
    Background:Tofacitinib is an oral JAK inhibitor that is being investigated for JIA.Objectives:To assess tofacitinib efficacy and safety in JIA patients (pts).Methods:This was a Phase 3, randomised, double-blind (DB), placebo (PBO)-controlled withdrawal study in pts aged 2−<18 years with polyarticular course JIA (pcJIA), PsA or ERA (NCT02592434). In the 18-week open-label Part 1, pts received weight-based tofacitinib doses (5 mg BID or lower). Pts with ≥JIA ACR30 response at Week (W)18 were randomised 1:1 in the DB Part 2 (W18−44) to continue tofacitinib or switch to PBO. Primary endpoint: disease flare rate by W44. Key secondary endpoints: JIA ACR50/30/70 response rates; change from Part 2 baseline (Δ) in CHAQ-DI at W44. Other efficacy endpoints: time to disease flare in Part 2; JADAS27-CRP in Parts 1 and 2. PsA/ERA pts were excluded from these efficacy analyses. Safety was evaluated in all pts up to W44.Results:225 enrolled pts with pcJIA (n=184), PsA (n=20) or ERA (n=21) received tofacitinib in Part 1. At W18, 173/225 (76.9%) pts entered Part 2 (pcJIA n=142, PsA n=15, ERA n=16). In pcJIA pts, disease flare rate in Part 2 was significantly lower with tofacitinib vs PBO by W44 (p=0.0031; Fig 1a). JIA ACR50/30/70 response rates (Fig 1b) and ΔCHAQ-DI (Fig 1c) at W44, and time to disease flare in Part 2 (Fig 2a), were improved with tofacitinib vs PBO. Tofacitinib reduced JADAS27-CRP in Part 1; this effect was sustained in Part 2 (Fig 2b). Overall, safety was similar with tofacitinib or PBO (Table): 77.3% and 74.1% had adverse events (AEs); 1.1% and 2.4% had serious AEs. In Part 1, 2 pts had herpes zoster (non-serious) and 3 pts had serious infections (SIs). In Part 2, SIs occurred in 1 tofacitinib pt and 1 PBO pt. No pts died.Conclusion:In pcJIA pts, tofacitinib vs PBO resulted in significantly fewer disease flares, and improved time to flare, disease activity and physical functioning. Tofacitinib safety was consistent with that in RA pts.Table.Safety in all ptsPart 1Part 2TofacitinibaN=225TofacitinibaN=88PBO N=85Pts with events, n (%)AEs153 (68.0)68 (77.3)63 (74.1)SAEs7 (3.1)1 (1.1)2 (2.4)Permanent discontinuations due to AEs26 (11.6)16 (18.2)29 (34.1)AEs of special interest Death000 Gastrointestinal perforationb000 Hepatic eventb3 (1.3)00 Herpes zoster (non-serious and serious)2 (0.9)c00 Interstitial lung diseaseb000 Major adverse cardiovascular eventsb000 Malignancy (including non-melanoma skin cancer)b000 Macrophage activation syndromeb000 Opportunistic infectionb000 SI3 (1.3)1 (1.1)d1 (1.2) Thrombotic event (deep vein thrombosis, pulmonary embolismbor arterial thromboembolism)000 Tuberculosisb000a5 mg BID or equivalent weight-based lower dose in pts <40 kgbAdjudicated eventscBoth non-seriousdOne SAE of pilonidal cyst repair was coded to surgical procedures instead of infections, and was inadvertently not identified as an SI. Following adjudication, the SAE did not meet opportunistic infection criteria; it is also included in the table as an SIAE, adverse event; BID, twice daily; PBO, placebo; pts, patients; SAE, serious AE; SI, serious infectionAcknowledgments:Study sponsored by Pfizer Inc. Medical writing support was provided by Sarah Piggott of CMC Connect and funded by Pfizer Inc.Disclosure of Interests:Nicolino Ruperto Grant/research support from: Bristol-Myers Squibb, Eli Lily, F Hoffmann-La Roche, GlaxoSmithKline, Janssen, Novartis, Pfizer, Sobi (paid to institution), Consultant of: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Speakers bureau: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Olga Synoverska Speakers bureau: Sanofi, Tracy Ting: None declared, Carlos Abud-Mendoza Speakers bureau: Eli Lilly, Pfizer Inc, Alberto Spindler Speakers bureau: Eli Lilly, Yulia Vyzhga Grant/research support from: Pfizer Inc, Katherine Marzan Grant/research support from: Novartis, Vladimir Keltsev: None declared, Irit Tirosh: None declared, Lisa Imundo: None declared, Rita Jerath: None declared, Daniel Kingsbury: None declared, Betül Sözeri: None declared, Sheetal Vora: None declared, Sampath Prahalad Grant/research support from: Novartis, Elena Zholobova Grant/research support from: Novartis and Pfizer Inc, Speakers bureau: AbbVie, Novartis, Pfizer Inc and Roche, Yonatan Butbul Aviel: None declared, Vyacheslav Chasnyk: None declared, Melissa Lerman Grant/research support from: Amgen, Kabita Nanda Grant/research support from: Abbott, AbbVie, Amgen and Roche, Heinrike Schmeling Grant/research support from: Janssen, Pfizer Inc, Roche and USB Bioscience, Heather Tory: None declared, Yosef Uziel Speakers bureau: Pfizer Inc, Diego O Viola Grant/research support from: Bristol-Myers Squibb, GSK, Janssen and Pfizer Inc, Speakers bureau: AbbVie and Bristol-Myers Squibb, Holly Posner Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Keith Kanik Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ann Wouters Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Cheng Chang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Richard Zhang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Irina Lazariciu Consultant of: Pfizer Inc, Employee of: IQVIA, Ming-Ann Hsu Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ricardo Suehiro Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Alberto Martini Consultant of: AbbVie, Eli Lily, EMD Serono, Janssen, Novartis, Pfizer, UCB, Daniel J Lovell Consultant of: Abbott (consulting and PI), AbbVie (PI), Amgen (consultant and DSMC Chairperson), AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb (PI), Celgene, Forest Research (DSMB Chairman), GlaxoSmithKline, Hoffman-La Roche, Janssen (co-PI), Novartis (consultant and PI), Pfizer (consultant and PI), Roche (PI), Takeda, UBC (consultant and PI), Wyeth, Employee of: Cincinnati Children's Hospital Medical Center, Speakers bureau: Wyeth, Hermine Brunner Consultant of: Hoffman-La Roche, Novartis, Pfizer, Sanofi Aventis, Merck Serono, AbbVie, Amgen, Alter, AstraZeneca, Baxalta Biosimilars, Biogen Idec, Boehringer, Bristol-Myers Squibb, Celgene, EMD Serono, Janssen, MedImmune, Novartis, Pfizer, and UCB Biosciences, Speakers bureau: GSK, Roche, and Novarti

    Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future

    Get PDF
    There are a number of limitations to using conventional diagnostic markers for patients with clinical suspicion of infection. As a consequence, unnecessary and prolonged exposure to antimicrobial agents adversely affect patient outcomes, while inappropriate antibiotic therapy increases antibiotic resistance. A growing body of evidence supports the use of procalcitonin (PCT) to improve diagnosis of bacterial infections and to guide antibiotic therapy. For patients with upper and lower respiratory tract infection, post-operative infections and for severe sepsis patients in the intensive care unit, randomized-controlled trials have shown a benefit of using PCT algorithms to guide decisions about initiation and/or discontinuation of antibiotic therapy. For some other types of infections, observational studies have shown promising first results, but further intervention studies are needed before use of PCT in clinical routine can be recommended. The aim of this review is to summarize the current evidence for PCT in different infections and clinical settings, and discuss the reliability of this marker when used with validated diagnostic algorithms

    CD64 as a potential biomarker in septic arthritis

    Get PDF
    Background Traditional inflammatory markers are generally unhelpful in discerning septic arthritis from inflammatory joint disease due to their lack of specificity. We wished to explore the discriminatory power of the novel inflammatory marker, Fc-gamma-receptor type 1, CD64, in patients presenting with acute arthritis. Methods Patients were recruited prospectively in the time period June 2009 to December 2011. Thirty-six patients presenting with an acute flare of chronic rheumatic arthritis, 31 with crystal-induced arthritis and 23 with septic arthritis were included. Traditional inflammatory markers, CD64 and procalcitonin (PCT) were measured and their diagnostic abilities were compared. Results CD64 and PCT both demonstrated a specificity of 98%, but poor sensitivities of 59% and 52%, respectively. White blood cell count (WBC), and erythrocyte sedimentation rate (ESR) did not have significant discriminatory power, while C-reactive protein (CRP) proved to have the best diagnostic accuracy as measured by area under the ROC curve (AUC 0.92, 95% confidence-interval 0.87-0.98). Subgroup analysis excluding patients with septic arthritis without concurrent bacteremia, and likewise exclusion of the patients with septic arthritis caused by coagulase negative staphylococci, both improved the diagnostic accuracy of CD64 and PCT, but not of WBC and CRP.</p< Conclusions CD64 and PCT are highly specific for infectious disease, but they predominantly measure bacteremia. Their use in hospital practice has yet to be defined, and especially so in localized infections
    corecore