2,029 research outputs found

    Juries and Justice: Are Malpractice and Other Personal Injuries Created Equal?

    Get PDF
    A study analyzed the civil jury system and the difference in personal injury awards between automobile and deep-pocket defendants, especially in medical malpractice cases. Six conclusions were reached, including the finding that juries sometimes respond emotionally and award some objectively similar cases higher damages than others

    Crowdsourcing complex workflows under budget constraints

    Get PDF
    We consider the problem of task allocation in crowdsourcing systems with multiple complex workflows, each of which consists of a set of interdependent micro-tasks. We propose Budgeteer, an algorithm to solve this problem under a budget constraint. In particular, our algorithm first calculates an efficient way to allocate budget to each workflow. It then determines the number of inter-dependent micro-tasks and the price to pay for each task within each workflow, given the corresponding budget constraints. We empirically evaluate it on a well-known crowdsourcing-based text correction workflow using Amazon Mechanical Turk, and show that Budgeteer can achieve similar levels of accuracy to current benchmarks, but is on average 45% cheaper

    Lower Limits on Aperture Size for an ExoEarth-Detecting Coronagraphic Mission

    Full text link
    The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multi-wavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically-motivated sample of exoEarths.Comment: Accepted for publication in ApJ; 38 pages, 16 Figures, 3 Table

    High temperature condensate clouds in super-hot Jupiter atmospheres

    Full text link
    Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.Comment: Accepted for publication in MNRAS, 10 pages, 1 table, 5 figure

    Use-wear analysis of an Amudian laminar assemblage from the Acheuleo-Yabrudian of Qesem Cave, Israel

    Get PDF
    In this paper the results of use-wear analysis of an Amudian lithic assemblage recently discovered at Qesem Cave, Israel, arc presented. Although very old. this assemblage maintains well-preserved traces of use that indicate that butchering activities and plants collecting were carried out at the site. Cut marks on faunal remains confirm the observations obtained by use-wear analysis. (c) 2005 Elsevier Ltd. All rights reserved

    High Temperature Condensate Clouds in Super-Hot Jupiter Atmospheres

    Get PDF
    Deciphering the role of clouds is central to our understanding of exoplanet atmo- spheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq∼2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b

    Budgeted Dominating Sets in Uncertain Graphs

    Get PDF
    We study the Budgeted Dominating Set (BDS) problem on uncertain graphs, namely, graphs with a probability distribution p associated with the edges, such that an edge e exists in the graph with probability p(e). The input to the problem consists of a vertex-weighted uncertain graph ? = (V, E, p, ?) and an integer budget (or solution size) k, and the objective is to compute a vertex set S of size k that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of S. We refer to the problem as the Probabilistic Budgeted Dominating Set (PBDS) problem. In this article, we present the following results on the complexity of the PBDS problem. 1) We show that the PBDS problem is NP-complete even when restricted to uncertain trees of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is ?[1]-hard for the budget parameter k, and under the Exponential time hypothesis it cannot be solved in n^o(k) time. 2) We show that if one is willing to settle for (1-?) approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time. 3) We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is ?[1]-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget k and the treewidth. 4) Finally, we extend some of our parameterized results to planar and apex-minor-free graphs. Our first hardness proof (Thm. 1) makes use of the new problem of k-Subset ?-? Maximization (k-SPM), which we believe is of independent interest. We prove its NP-hardness by a reduction from the well-known k-SUM problem, presenting a close relationship between the two problems
    corecore