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Abstract

We consider the problem of task allocation in crowdsourc-
ing systems with multiple complex workflows, each of which
consists of a set of inter-dependent micro-tasks. We propose
Budgeteer, an algorithm to solve this problem under a bud-
get constraint. In particular, our algorithm first calculates an
efficient way to allocate budget to each workflow. It then de-
termines the number of inter-dependent micro-tasks and the
price to pay for each task within each workflow, given the cor-
responding budget constraints. We empirically evaluate it on
a well-known crowdsourcing-based text correction workflow
using Amazon Mechanical Turk, and show that Budgeteer
can achieve similar levels of accuracy to current benchmarks,
but is on average 45% cheaper.

Introduction

Major organisations are increasingly reliant on an online
workforce to carry out computationally hard tasks (e.g., tran-
scribing text, writing reviews, designing logos, or tagging
images). Using online crowdsourcing platforms, these or-
ganisations are able to leverage millions of workers from
around the world to carry out small units of work called
micro-tasks in return for a small monetary reward (Bernstein
et al. 2010; Lin, Mausam, and Weld 2012; Little et al. 2009;
Ramchurn et al. 2013). By so doing, they are able to scale
their workforce at will and minimise their costs.

When allocating tasks to a large online ‘crowd’, how-
ever, organisations face a number of challenges (Ho and
Wortman-Vaughan 2012; Tran-Thanh et al. 2012; 2013).
First, given that workers may come from different coun-
tries (e.g., China, India, UK, US) and have different skills,
the quality of their work may vary significantly. For exam-
ple, native English speakers are likely to perform better at
correcting spelling mistakes or graduate graphic designers
may do a better job at drawing a logo compared to a non-
expert. Second, in many cases, it is not clear what deter-
mines whether the task is completed correctly or not (i.e., it
is either too costly to determine or there is no ground truth),
particularly when workers may perform the same task dif-
ferently. Third, workers at differenet economic background
may perform tasks to different quality levels depending on
the rewards offered. Fourth, tasks may not be easily bro-
ken down into micro-tasks that can be independently com-
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pleted by individual workers. This requires multiple com-
plex workflows to be interleaved to complete the interdepen-
dent micro-tasks (e.g., the correction of spelling mistakes in
a piece of text can be broken down into multiple workflows
involving finding and fixing the mistakes or text can be sum-
marised by deleting words or sentences, and writing new
ones (Bernstein et al. 2010)). In general, these challenges
point to the fact that crowdsourcing, even in the case of the
simplest tasks, is error-prone and potentially costly.

While Kamar, Hacker, and Horvitz (2012), Dai et al.
(2013), Karger, Oh, and Shah (2011), Simpson et al. (2011)
propose using probabilistic techniques and redundancy (i.e.,
different workers are asked to perform the same task until
consensus is achieved on the outcome) to deal with inac-
curacies and minimise the costs incurred, they assume that
individual tasks are independent from each other and can
be arbitrarily allocated to the crowd (see next section for
more details). Hence these solutions cannot be readily ap-
plied to problems involving inter-dependent micro-tasks. In-
stead, Bernstein et al.; Lin, Mausam, and Weld; Ramchurn
et al. propose workflows to allocate interdependent micro-
tasks in multiple phases, where each task performance phase
generates new micro-tasks for the next phase. For example,
in Bernstein et al. (2010) (and later extended by (Little et
al. 2009; Lin, Mausam, and Weld 2012; Ramchurn et al.
2013)), a Find-Fix-Verify (FFV) workflow is used to correct
and shorten text by passing ‘Finds’ of mistakes in sentences
by a set of workers to another set of workers who ‘Fix’ these
mistakes. In addition, another set of workers ‘Verify’ these
mistakes (more details are given in the next section). In such
a workflow, however, given that new tasks are created in
some phases by the crowd, the cost of the exercise may grow
beyond control! To date, most approaches set limits on the
number of tasks to be completed in each phase in an ad hoc
fashion, and by so doing, trade off any guarantees of accu-
racy. In contrast, Tran-Thanh et al. proposed the BudgetFix
mechanism to allocate a budget across multiple phases of a
workflow and this was shown to cost less than and generate
better results than (Bernstein et al. 2010). However, Budget-
Fix assumes prior knowledge of the difficulty of each task,
sets arbitrary parameters to constrain the number of tasks for
each phase of a workflow, and only considers how the budget
is split across each phase of one workflow at a time. Thus,

'In the FFV workflow, for each Find, there are multiple possible
Fixes and each Fix requires a number of possible verifications.



in general, previous approaches are parameterised, necessi-
tating manual tuning, and do not attempt to manage costs in
a principled way across multiple workflows.

Against this background, this paper addresses the problem
of multi-workflow task allocation under budget constraints.
In particular, we aim to solve a text correction problem pre-
viously studied by (Bernstein et al. 2010; Tran-Thanh et al.
2014)?. However, while the latter only consider one sen-
tence at a time, we consider the more natural setting where
text, consisting of multiple sentences, needs to be corrected
using a FFV workflow for each sentence. Hence the chal-
lenge we address is to determine how a budget should be
split across sentence-correction workflows, and within each
workflow (i.e., for each Find, Fix, and Verify phase) in order
to generate high quality outcomes. To this end, we propose
Budgeteer, a budget and task allocation algorithm that uses
an initial exploration phase to estimate the difficulty of the
sentences. Based on these findings, it then chooses an allo-
cation scheme that minimises a certain upper bound of the
total error probability, i.e., the probability that we will pro-
vide an erroneous correction (for more details, see the next
sections). Once the budgets are allocated to the sentences,
Budgeteer allocates the number of Find, Fix, and Verify
tasks for each of the sentences in a similar vein to BudgetFix.
Note that our algorithm can efficiently (i.e., with negligible
cost) learn the size of budget it needs to allocate to each of
the sentences, and thus, it indeed can tune the parameters to
adapt to different sentences.

More specifically, this paper advances the state of the art
in the following ways. First, Budgeteer is the first budget-
limited crowdsourcing algorithm to consider budget alloca-
tion across and within multiple complex workflows. Second,
compared to existing benchmarks, Budgeteer does not rely
on manually-tuned parameters to allocate the budget. Fi-
nally, through empirical evaluation using Amazon Mechan-
ical Turk, we show that it achieves similar accuracy to the
current benchmarks, but with 45% less cost.

Background

Here we first discuss some examples of complex crowd-
sourcing workflows and then present budget-constrained
crowdsourcing algorithms. By so doing, we describe the
problem addressed by Budgeteer and key benchmarks
against which we evaluate it.

Complex Crowdsourcing Workflows

The most basic crowdsourcing workflows involve only one
type of micro-task, for example, to tag an image or trans-
late a sentence. However, as organisations attempt to address
more complex problems, more complex workflows are re-
quired to recruit workers to solve these problems. For ex-
ample, a number of techniques have been proposed to or-
ganise a workforce to follow certain constraints when plan-
ning itineraries (Zhang et al. 2012), to retain a crowd and
select a pilot to drive a robot in real-time (Lasecki et al.
2012), and to correct and summarise text within a text ed-
itor (Bernstein et al. 2010). We use the latter domain as it is
a well-established benchmark for crowdsourcing. In partic-
ular, we focus on the text correction element of the Soylent

>While we focus on a text correction problem, our approach
generalises to other tasks requiring complex workflows.

system designed by (Bernstein et al. 2010) and later adopted
by (Tran-Thanh et al. 2014; Ramchurn et al. 2013). Soylent
uses the FFV workflow to break a large, complex task into
Find, Fix and Verify micro-tasks (see previous section for
more details). To address the possibility that multiple phases
will generate exponentially increasing numbers of crowd-
sourcing tasks, hence resulting in uncontrollable costs, Soy-
lent relies on very simple ad hoc heuristics (e.g., only ‘find’s
with 20% agreement are passed to the Fix phase) that de-
termine the number of outcomes to pass from one phase to
another. While this helps achieve high accuracy of the out-
comes in practice, it is by no means budget-efficient. In con-
trast, our approach tackles same problem of task allocation
but with a budget constraint and therefore determines how
this budget should be split using FFV to maximise accuracy.
Budget-Constrained Crowdsourcing

A number of approaches have emerged in the last few years
to consider crowdsourcing under budget constraints (Karger,
Oh, and Shah 2011; Ho and Wortman-Vaughan 2012; Tran-
Thanh et al. 2012; 2013; Azaria, Aumann, and Kraus 2014).
While most of these approaches attempt to provide some
performance guarantees (i.e., in terms of task completion ac-
curacy), they typically apply to simple crowdsourcing work-
flows whereby workers are only asked to do one type of task
rather than the heterogenous micro-tasks that are interleaved
in complex workflows. Moreover, they assume that all bud-
geted tasks have an equal level of difficulty. More recently,
the BudgetFix algorithm (Tran-Thanh et al. 2014) addressed
the problem of budget-constrained crowdsourcing for com-
plex workflows. While making no assumptions about task
difficulty, they rely heavily on finely-tuned parameters to
guarantee high quality results. In fact, as we show in our
evaluation, if such parameters are poorly selected, Budget-
Fix can perform worse than ad hoc methods used by other
approaches in the literature. Moreover, BudgetFix only con-
siders how to allocate a given budget within one workflow.
In contrast, Budgeteer automatically adapts to the difficulty
of tasks and allocates the budget across multiple workflows.

Problem Definition

We now formally define the problem of task allocation with
multiple workflows under budget constraints for the text cor-
rection problem presented in the previous section. Further-
more, for the sake of simplicity, we assume that there is only
one mistake to fix within a given sentence.

Note that it is not difficult to relax this assumption to the
case of multiple mistakes per sentence. In fact, we can re-
place the one-winner selection tournament methods we use
in our algorithm (see the subsequent section for more de-
tails) with multi-winner selection techniques, such as given
in (Kaufmann and Kalyanakrishnan 2013; Kalyanakrishnan
et al. 2012). In what follows, we first present the FFV work-
flow and then describe the constraints and assumptions un-
der which it is executed.

The Find-Fix-Verify Workflow

For now we only consider one sentence (and later consider
multiple sentences when having to distribute the budget).
Our goal here is to find a single mistake within this sen-
tence. The FFV workflow allows a task allocation agent to



separate the tasks of finding a mistake, correcting it, and en-
suring that all corrections to fixes received are themselves
correct. This workflow was shown to be effective in getting
text corrected to a high accuracy (over 90%) without any
budget limitations. Here we formalise and then extend it to
consider budget constraints. The details of each step are:
Find: the agent asks the workers to identify the position of
the error in sentence s. Let X denote the set of possible error
candidates (i.e., all positions in the text at which an error
can occur). We assume that these responses are drawn from
an unknown distribution DX, and that the error is at true
position z*.

Fix: the agent asks the workers to fix the identified errors at
positions X’ € X (we may not request all the errors found
to be fixed). In addition, for each z € X’ possible error po-
sition, let Y (z) denote the set of possible fixes that belong
to position . We assume that for each x € X', Y'(z) con-
tains the “No-Fix” response. This response represents the
case when z is believed to be non-erroneous. We assume
that for each = € X', the fix responses that belong to x are
also drawn from an unknown distribution DY (*). For each
x € X' we denote its true fix y*(z).

Verify: the agent asks the workers to vote on whether a
possible error-fix pair (z,y) is correct. Let Z(z,y) denote
the set of verification responses of pair (x,y). For each
z € Z(z,y), we have z = 1 if the voter thinks the fix y
of position x is correct, i.e. y(z) = y*(z), and z = 0 other-
wise. Thus, the responses that belong to each pair (z, y) can
be regarded as random variables drawn from an unknown
Bernoulli distribution D% (@),

The FFV workflow only applies to one sentence at a time
and hence, previous approaches have only considered how
to allocate a budget to each step of the workflow (Bernstein
et al. 2010; Tran-Thanh et al. 2014). This ignores the fact
that different sentences have different difficulties and an or-
ganisation will dedicate a budget to a collection of sentences
rather than to individual sentences at a time. Hence, in the
next section, we formalise the problem of crowdsourcing
tasks under budget constraints for multiple workflows.

Multiple Workflows under a Budget Constraint

We now turn to the description of our problem. Let the costs
for requesting a task in each of the Find, Fix, and Verify
phases be defined as real values ¢, ¢¥, and ¢?, respec-
tively (these costs are the same for all the sentences within
the text). Suppose that the text that needs to be corrected
consists of SY sentences, from the set S = {1,...,5%}.
For each s € S°, let N 3( , N SY ,and N, f denote the number
of responses we require from the crowd for each of the FFV
phases for sentence s, respectively.

Now, given a budget BY € R, the total cost of the re-
quested tasks should not exceed this budget. This can be ex-
pressed as the following constraint:

SO
3 (NSXCX +N8YcY+NSZcZ) < B )
s=1

The challenge is then to determine the values of NX, NY,

and NZ for each s € S so that this constraint is not violated.
Crucially, it is important to ensure that each sentence gets

enough coverage by the crowd in order to find and fix any
mistakes in it. Hence, we describe the Budgeteer algorithm
that solves this problem.

The Budgeteer Algorithm

Budgeteer first calculates how to efficiently split the budget
among the sentences such that each budget is sufficiently
large for good error detection within the corresponding sen-
tence. It then uses the assigned budget to allocate Find,
Fix, and Verify tasks for each of the sentences by solv-
ing an optimisation problem. The main challenge here is
to find a good way to split the budget across multiple runs
of FFV on individual sentences. In particular, as observed
by Tran-Thanh et al. (2014), difficult sentences (those that
involve more complex words or grammar) tend to require
more tasks to be completed. This is due to the fact that the
crowd contains workers that are not native English speak-
ers that may not be able to differentiate between mistakes
and complex words. Hence, the budget split across multiple
sentences needs to capture the difficulty levels of individ-
ual sentences in order to ensure each sentence gets enough
passes through the FFV workflow for accurate error correc-
tion. Given this, Budgeteer consists of: (i) an exploration
phase, where we use a small portion of the budget to es-
timate the difficulty of the sentences; (ii) a budget alloca-
tion phase, where Budgeteer calculates how much budget
it should assign to each sentence; and (iii) an optimisation
phase, where the algorithm solves an optimisation problem
to derive the number of Fix, Find and Verify tasks for each
particular sentence.
1. Exploration phase: We use a uniform exploration ap-
proach by requesting a fixed, small number of Finds per
sentence. Note that in our experiments, we use three
Finds/sentence (see the next section for more detail), and
for those sentences with one Find candidate (i.e., all the re-
sponses suggest the same location as candidate), we request
the same number of Fix tasks per sentence. We repeat this
with sentences with one Fix candidate in their Verify phase.
The intuition behind this exploration phase is that, by
crowdsourcing a small number of micro-tasks for each sen-
tence, we can build an initial estimate about the difficulty of
the sentences. In particular, those with a larger number of
Find or Fix candidates can be considered as more difficult
sentences, and vice versa (see, e.g., Figure 2 for more de-
tails). On the other hand, we can easily spot the extremely
easy sentences, i.e., those with 1-1 Find and Fix candidates.
The key challenge here is to ensure that this exploration
phase does not significantly increase the cost of the whole
exercise. However, in what follows we argue that we can al-
ready perform error correction with high accuracy from the
responses collected within this phase, and thus, we do not
need to allocate additional budget to these sentences within
the next phases.
2. Budget allocation phase: We consider S, the set of sen-
tences that still require additional budget allocation after the
exploration phase (S C S°). Note that after the exploration
phase, we do not request any additional tasks for the ex-
tremely easy sentences. For each sentence s € S, let K .
and L7 . denote the number of Find and Fix candidates of
sentence s we received in the exploration phase. If we have



at least one Find candidate for s in the exploration phase,
we can set K . as the number of Find candidates of s.

max
Otherwise, we set K3 .. = maxy K S x> Where s’ indexes
through all the sentences with a positive number of Find can-
didates. We can set L . in a similar way (but with Fix can-

didates). By so domgj1 we define K%, and L3 .. foreach s.

max
Given that the difficulty of a sentence is strongly related to
the number of its Find/Fix candidates, K . and L7 . can,
in fact, provide a good estimate of the difficulty of s. We now
set the budget B for sentence s as follows. Let B < BO de-
note the total residual budget after the exploration phase. For

each sentence s € S, let B® denote the budget allocated to
5. We have:

B =Y, Ci (nCf - & —m3)
E’I‘GS Cl

Cy
o In 3) 2)

BS = Cl

+ C] (lan -

where for each s € S, C{ and C§ can be calculated as fol-
lows:

Wi

J Vs
Ci=D g =2
J

where j is either X, Y, or Z, and for each s € S, we have:

Wt = o v =2
1 1 Koo (Kfax — 1)
W.S,Y _ V.s,Y _ 1 max max
V(Kfax)® K 2
1 p 1 Lo (Livax — 1)
WS,Z _ Vs, _ 1 max max
’U(L;qnax)2’ ULISnax +in 2

The intuition of this budget allocation given in Equa-
tion (2) is as follows. Suppose that the budget for or each
sentence s is given. In this case, we only need to focus on
the task allocation of Find, Fix and Verify tasks within the
workflow of each s, such that the total cost of the task allo-
cation does not exceed the given budget. To to so, we solve
an optimisation problem (which we describe later) in order
to determine the efficient number of Find, Fix, and Verify
tasks that we need to request from the crowd. In particu-
lar, the solution of this optimisation problem provides a task
allocation that minimises an upper bound on the error prob-
ability of s, i.e., the probability that we incorrectly estimate
either the location or the correction within s (for more detail,
see Tran-Thanh et al. (2014)). Let us denote this bound with
P(B?), where B® is the budget allocated to s (see Equa-
tion (4)). Given this, the total error probability of S is upper

bounded by
> P(B*),wrt. » B°<B 3)
seS seS

Thus, our budget allocation problem can be formalised as
another optimisation problem, where the goal is to find a
budget allocation such that the aforementioned total error
bound defined in Equation (3) is minimised. This, in fact,
can be done by using the standard Lagrangian relaxation
method (Boyd and Vandenberghe 2004) which we do not

detail here due to limited space. Thus, by solving this opti-
misation problem, we obtain that Equation (2) provides the
optimal solution, and thus, the minimal bound of the total
error probability bound.

It is worth to note that the budget allocated to a sentence s
is proportional to its difficulty level as follows: Let the tuple
(k,l) be the value of K5, and L2 ., respectively. In this
case, the budget allocated to s is B® = O(k?Ink + [*Inl).
3. Optimisation phase: Having defined the budget B® for
each s € S, we turn to the allocation of Find, Fix, and Ver-
ify tasks per sentence, with respect to its budget B®. To do
so, we use a state-of-the-art single-winner selection tech-
nique (Audibert, Bubeck, and Munos 2010) to choose the
best candidate for Find, and then for Fix, respectively.

3.1 Estimation of Find: In particular, we first request Find
tasks for s up to a limit NV SX , which will be determined later.
Let K denote the size of the set of Find candidates X (i.e.,
K, = | X,|). We then choose the best min{ K3 ..., K} Find
candidates from X (the min operator is required as we do
not want to exceed K-, ). This represents the set of possible
candidate from which we would like to choose our estimate.
We then run the following single-winner tournament to esti-
mate the correct Find: We run the tournament in rounds such
that we always eliminate one candidate at the end of each
round. Within each round, we request the same, fixed num-
ber of Fix tasks for each of the remaining Find candidates
such that the total number of Fix tasks requested within the
whole tournament should not exceed N, which will be de-
termined later as well? To eliminate the weak candidates at
the end of each round, we measure the fitness of each Find
candidate x € X by calculating the ratio of its total fixes
that are not “No-Fix” (i.e., y(x) # “No-Fix” —recall that
a “No-Fix” is the identification that a sentence has no er-
rors) to its total Fix responses (i.e., this fitness measures the
probability that the location does indeed require a fix). The
weakest candidate, and thus the one we eliminate, is the one
that has the lowest fitness at the end of the round. When only
one Find candidate remains, we choose it as our estimate.
3.2 Estimation of Fix: To estimate the correct fix, we run an-
other single-winner selection tournament among the set of
Fix candidates Y;(z*) of the winning Find candidate z*. In
particular, let L, denote the total number of these Fix candi-
dates (i.e., Ly = |Ys(«*)|). Similar to the tournament above,
we only run this tournament on the best min{L3,, ., Ls} Fix
candidates. The nature of the tournament is the same as the
previous one, except for the fact that here we request Ver-
ify tasks to measure the fitness of the candidates, such that
the total number of Verify tasks cannot exceed NZ (also de-
termined later), and the fitness is defined as the ratio of the
candidate’s positive responses (i.e., z(y,z*) = 1) to its to-
tal number of Verifies. Again, similar to the previous tour-
nament, the ratio of positive Verifies, and thus the fitness
level, measures how likely it is that a particular Fix is cor-
rect. We also eliminate the weakest candidate at the end of
each round. The last remaining Fix y* will be our estimate.
3.3 Identifying the number of tasks per phase: We now turn
to determine NX,NY and NZ, the number of Find, Fix, and
Verify requests for s. Note that this step in fact has to be

3This fixed number of Fix tasks per Find candidate per round
can be explicitly calculated from N and min{ K3, K.}.



\ Category: [ Low [ Medium | High [ V.High |
Flesch Reading Ease | 90.4 56.8 36.8 0.53
Fog Scale Level | 6.4 14.1 18.8 34.4
Flesch-Kincaid | 4.2 10.2 149 | 30.7

Table 1: Complexity measures for sentences per category.

done before steps 3.1 and 3.2. In particular, suppose that we
have done this step, then for any fixed tuple of N, ;X N 3/ ,and
NZ, after running steps 3.1 and 3.2, by using the theoretical
results from (Audibert, Bubeck, and Munos 2010), we can
calculate an upper bound on the probability of not choos-
ing the correct Find or Fix candidate (i.e., error probabil-
ity). Let P(NX, NY NZ) denote this upper bound of er-
ror probability. Following (Tran-Thanh et al. 2014), we can
identify the optimal value of NX, NY and NZ, such that
P(NX,NY NZ) is minimised. In fact, we can obtain this
optimal solution by solving the convex optimisation problem
below (also by using the Lagrangian relaxation approach):

min P(NX,NY ,NZ), st. NX+NY +NZ2<B° (4

NX NY NZ

Let P(B?) denote this minimal error probability bound. Re-
call that the value of P(B?) is used to solve another opti-
misation problem, whose solution leads to our budget allo-
cation scheme given in Equation (2). Note that during this
optimisation phase, we also take into account our observa-
tions from the exploration phase (i.e., we do not ignore any
Find, Fix or Verify responses from the first phase).
Evaluation Settings: In order to evaluate BudgetFix within
a realistic setting, we replicate an experiment similar to the
text correction task previously used to evaluate the Soylent
and BudgetFix algorithms. To do so, we create a dataset
of a total of 100 sentences? We inject mistakes in a sim-
ilar manner to (Tran-Thanh et al. 2014). In more detail,
we consider three types of mistakes with equal distribution:
spelling mistakes based on an added letter, spelling mis-
takes based on a missing letter, and grammar mistakes. We
place these mistakes into sentences that are of four differ-
ent complexity levels which generally represent sentences
from low to extremely high complexity (low, medium, high,
very high). The low complexity sentences are taken from
publicly available children’s stories? the medium ones are
taken from open computer science textbooks? the high ones
are taken from recently published computer science articles,
and the extremely high ones from the terms of conditions of
e-commerce websites. To quantify the complexity of these
sentences we measure the Flesch Reading Ease, Fog Scale
Level, and Flesch-Kincaid Grade Level measures (Flesch
1948; Kincaid et al. 1975), which constitute accepted mea-
sures of sentence complexity (see Table 1).

Performance Comparison: We then apply the Soylent,
BudgetFix, and Budgeteer algorithms to these sentences.
As per the original Soylent experiments, we use Amazon
Mechanical Turk (AMT 2010) and workers are paid the
same amount, i.e. $0.06 per Find task, $0.08 for Fix tasks,
and $0.04 for Verify tasks. Within Soylent, regardless of

“This dataset is available at http://bit.1ly/1sTya7F.
‘http://bit.ly/1lmdwEz2.
*http://bit.ly/1BEHajI.

Algorithm | Cost per sentence Accuracy

Soylent $1.38 (0.01) 84.41% (0.44)
BudgetFix $0.71 (0.01) 85.11% (0.42)
Budgeteer $0.75 (0.04) 85.28% (0.48)

Table 2: The average cost and accuracy (with 95% confi-
dence value) of Soylent, BudgetFix (with optimally tuned
parameters), and Budgeteer.

Complexity: | Low | Medium | High | V. High
Solved in Expl. Phase | 39% 45% 27% 28%

Table 3: The percentages of sentences solved in the Explo-
ration Phase of Budgeteer per sentence complexity.

the sentence difficulty or budget, a minimum of 10 Find,
5 Fix, and 5 Verify tasks are generated per sentence (as
per (Bernstein et al. 2010)). In contrast, both BudgetFix and
Budgeteer use variable numbers of Finds, Fixes and Verifies
as per their algorithms. In order to minimise the element of
chance, we requested more responses from the crowd than
required by the three algorithms and simulate the algorithms
100 times, each time on a randomly picked set of responses
from the pool of responses we received. The same method
was also used to produce all the results later reported here.
As can be seen from Table 2, all three algorithms perform
similarly — reaching approximately 85% correction accu-
racy. However, BudgetFix (when its parameters are opti-
mally tuned) and Budgeteer, both reach this accuracy with
only half of the cost. This result highlights the success
of both of these algorithms in performing comparably to
the state-of-the-art baseline, while significantly reducing the
budget needed to achieve this performance.
Shortcomings of BudgetFix: Note, however, that Budget-
Fix is manually tuned to achieve comparable performance to
Budgeteer. Crucially, BudgetFix requires three parameters
to be tuned: K ,ax, Lmax, and € (while K. and Ly,ay in
BudgetFix have a similar purpose in Budgeteer, ¢ is used
to control the accuracy of estimation in the Find phase).
As Figure 1 shows, the performance of BudgetFix can vary
significantly if these parameters are poorly set. Moreover,
note that the BudgetFix performance in Table 2 is based on
its (manually-set) optimal parameter settings (i.e., Kpnax =
Lmax =2 and € = 0.1). However, BudgetFix’s performance
can drop to as low as 73% if these parameters are not set op-
timally (e.g., when Ly, = 2 and K ,,,x and € were changed
only slightly to 3 and 0.2 respectively). This result highlights
BudgetFix’s sensitivity to setting its parameters, something
that is overcome in Budgeteer. In contrast, Budgeteer au-
tomatically sets its parameters to fit each sentence according
to its difficulty level, and thus, it does not suffer from this.
Advantages of Budgeteer: Table 3 is useful for understand-
ing why Budgeteer is successful. Budgeteer’s algorithm
leverages its exploration phase to identify which sentences
are relatively hard to correct and, therefore, allocate more
micro-tasks to these sentences and fewer to easy ones. Re-
call that we consider the first stage to have found an “easy”
sentence if all three people agree in the Find stage. Note that
the low and medium categories have nearly half of the sen-
tences being “solved” as a result of this condition (i.e., 39%
and 45%). As is somewhat to be expected, sentences with
lower structure complexity (see Table 1) were found easier



Difficulty: Low Medium High Very High
Algorithm | Find | Fix | Verify | Find | Fix | Verify | Find | Fix | Verify | Find | Fix | Verify
Soylent 10.0 | 5.3 79 10 | 5.8 7.0 10 | 6.6 7.4 10 | 6.9 6.4
BudgetFix | 5.0 | 4.0 8.0 50 | 42 8.0 50 | 42 8.0 50 | 44 8.0
Budgeteer | 5.6 | 3.7 94 58 | 5.0 9.2 59 | 65 8.8 6.0 | 8.0 8.6

Table 4: The average numbers of micro-tasks (Find, Fix, and Verify) allocated by Soylent, BudgetFix (optimal), and Budgeteer.
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Figure 2: The average number of unique fix and find candi-
dates identified by Budgeteer per sentence complexity.

to correct. However, this is not always the case, as the Low
category had fewer sentences being solved in the exploration
phase (39% versus 45% respectively). Moreover, more than
25% of the High and Very High sentences were also solved
during this phase. This result shows that task complexity
can, and should, be determined by the workers’ performance
during a deployment and not by external measures, includ-
ing the sentence complexity. By so doing, Budgeteer can
better identify which sentences are in fact in need of addi-
tional resources in the upcoming Fix and Verify micro-tasks.
Among the sentences that were not solved in the first stage,
in the second stage, however, we found that the number of
unique Find and Fix identified by Budgeteer strongly cor-
related with the sentence complexity (see Figure 2).

To further illustrate the differences between Budgeteer,
Soylent, and BudgetFix, Table 4 presents a full comparison
of the numbers of Find, Fixes, and Verifies in all sentence
categories. Given that both Soylent and BudgetFix do not
consider budget allocations across workflows and consider
each sentence independently, the number of micro-tasks in
both of these algorithms only slightly changes across dif-
ferent sentence categories. In contrast, as Budgeteer uses
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Figure 3: Budgeteer’s accuracy vs cost per sentence.

a joint budget across all workflows, it dynamically redis-
tributes its budget to address the sentences which its first
stage found to be harder to correct. As per Table 3, more sen-
tences were removed in Budgeteer’s first stage in the low
and medium categories, and therefore, it is not surprising
that relatively large differences in the number of Fixes exist
across different categories (ranging from 3.7 for the low cat-
egory to 8.0 for the very high one). This result implies that a
joint budget is better at adjusting to task difficulty.

Another key advantage of Budgeteer over BudgetFix
is that only one parameter needs to be set, the total bud-
get BY. As Figure 3 demonstrates, when BO is increased,
Budgeteers overall performance improves, albeit the im-
provement tails off in the long run. This is because the algo-
rithm focuses progressively more of its budget on the hard-
est sentences. However, as several sentences in this dataset
were not correctly solved by any of the workers, it was not
possible to achieve 100% accuracy.

Conclusions

This paper presents Budgeteer, the first budget and task
allocation algorithm that can efficiently deal with crowd-
sourced task allocation within multiple complex workflows
under a budget constraint. We tested our algorithm within a
canonical text error correction system, using the FFV work-
flow to formalise the inter-dependency between the micro-
tasks. Here, the goal is to perform text correction on multi-
ple sentences, each is represented by a FFV workflow. We
benchmarked Budgeteer and show that it outperforms the
benchmarks both in terms of cost and accuracy. Future work
will look at extending Budgeteer to consider more complex
workflows that may involve, for example, recursive tasks, or
micro-tasks with varying costs.
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