61 research outputs found

    Molecular properties of human guanylate cyclase-activating protein 2 (GCAP2) and its retinal dystrophy-associated variant G157R

    Get PDF
    In murine and bovine photoreceptors, guanylate cyclase activating-protein 2 (GCAP2) activates retinal guanylate cyclases (GC) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog GCAP1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited-retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to three Mg2+ ions with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, non-myristoylated GCAP2 does not bind Mg2+ over the physiological range, and remains as a monomer in the absence of Ca2+. Both myristoylated and non-myristoylated GCAP2 bind Ca2+ with high affinity. At odds with GCAP1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations, and is prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 in human photoreceptors might be mostly implicated in processes other than phototransduction, and suggest a possible molecular mechanism for G157R-associated IRD

    Anticipation of wheelchair and rollerblade actions in spinal cord injured people, rollerbladers, and physiotherapists

    Get PDF
    Embodied Cognition Theories (ECT) postulate that higher-order cognition is heavily influenced by sensorimotor signals. We explored the active role of somatosensory afferents and motor efferents in modulating the perception of actions in people who have suffered a massive body-brain disconnection because of spinal cord injury (SCI), which leads to sensory-motor loss below the lesion. We assessed whether the habitual use of a wheelchair enhances the capacity to anticipate the endings of tool-related actions, with respect to actions that have become impossible. In a Temporal Occlusion task, three groups of participants (paraplegics, rollerbladers and physiotherapists) observed two sets of videos depicting an actor who attempted to climb onto a platform using a wheelchair or rollerblades. Three different outcomes were possible, namely: a) success (the actor went up the step); b) fail (the actor stopped before the step without going up) and c) fall (the actor fell without going up). Each video set comprised 5 different durations increasing in complexity: in the shortest (600ms) only preparatory body movements were shown and in the longest (3000ms) the complete action was shown. The participants were requested to anticipate the outcome (success, fail, fall). The main result showed that the SCI group performed better with the wheelchair videos and poorer with rollerblade videos than both groups, even if the physiotherapists group never used rollerblades. In line with the ECT, this suggests that the action anticipation skills are not only influenced by motor expertise, but also by motor connection

    Optimization of a Sustainable Protocol for the Extraction of Anthocyanins as Textile Dyes from Plant Materials

    Get PDF
    Anthocyanins are the largest group of polyphenolic pigments in the plant kingdom. These non-toxic, water-soluble compounds are responsible for the pink, red, purple, violet, and blue colors of fruits, vegetables, and flowers. Anthocyanins are widely used in the production of food, cosmetic and textile products, in the latter case to replace synthetic dyes with natural and sustainable alternatives. Here, we describe an environmentally benign method for the extraction of anthocyanins from red chicory and their characterization by HPLC-DAD and UPLC-MS. The protocol does not require hazardous solvents or chemicals and relies on a simple and scalable procedure that can be applied to red chicory waste streams for anthocyanin extraction. The extracted anthocyanins were characterized for stability over time and for their textile dyeing properties, achieving good values for washing fastness and, as expected, a pink-to-green color change that is reversible and can therefore be exploited in the fashion industry

    Transient Expression in Red Beet of a Biopharmaceutical Candidate Vaccine for Type-1 Diabetes

    Get PDF
    Plant molecular farming is the use of plants to produce molecules of interest. In this perspective, plants may be used both as bioreactors for the production and subsequent purification of the final product and for the direct oral delivery of heterologous proteins when using edible plant species. In this work, we present the development of a candidate oral vaccine against Type 1 Diabetes (T1D) in edible plant systems using deconstructed plant virus-based recombinant DNA technology, delivered with vacuum infiltration. Our results show that a red beet is a suitable host for the transient expression of a human derived autoantigen associated to T1D, considered to be a promising candidate as a T1D vaccine. Leaves producing the autoantigen were thoroughly characterized for their resistance to gastric digestion, for the presence of residual bacterial charge and for their secondary metabolic profile, giving an overview of the process production for the potential use of plants for direct oral delivery of a heterologous protein. Our analysis showed almost complete degradation of the freeze-dried candidate oral vaccine following a simulated gastric digestion, suggesting that an encapsulation strategy in the manufacture of the plant-derived GAD vaccine is required

    Recombinant protein delivery enables modulation of the phototransduction cascade in mouse retina

    Get PDF
    Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases

    Russell-like bodies in plant seeds share common features with prolamin bodies and occur upon recombinant protein production

    Get PDF
    Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production

    Molecular properties of human Guanylate Cyclase-Activating Protein 3 (GCAP3) and its possible association with Retinitis Pigmentosa

    Get PDF
    The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism

    Neurodegeneration-associated proteins in human olfactory neurons collected by nasal brushing

    Get PDF
    The olfactory neuroepithelium is located in the upper vault of the nasal cavity, lying on the olfactory cleft and projecting into the dorsal portion of the superior and middle turbinates beyond the mid-portion of the nasal septum. It is composed of a variety of cell types including olfactory sensory neurons, supporting glial-like cells, microvillar cells, and basal stem cells. The cells of the neuroepithelium are often intermingled with respiratory and metaplastic epithelial cells. Olfactory neurons undergo a constant self-renewal in the timespan of 2\u20133 months; they are directly exposed to the external environment, and thus they are vulnerable to physical and chemical injuries. The latter might induce metabolic perturbations and ultimately be the cause of cell death. However, the lifespan of olfactory neurons is biologically programmed, and for this reason, these cells have an accelerated metabolic cycle leading to an irreversible apoptosis. These characteristics make these cells suitable for research related to nerve cell degeneration and aging. Recent studies have shown that a non-invasive and painless olfactory brushing procedure allows an efficient sampling from the olfactory neuroepithelium. This approach allows to detect the pathologic prion protein in patients with sporadic Creutzfeldt\u2013Jakob disease, using the real-time quaking-induced conversion assay. Investigating the expression of all the proteins associated to neurodegeneration in the cells of the olfactory mucosa is a novel approach toward understanding the pathogenesis of human neurodegenerative diseases. Our aim was to investigate the expression of \u3b1-synuclein, \u3b2-amyloid, tau, and TDP-43 in the olfactory neurons of normal subjects. We showed that these proteins that are involved in neurodegenerative diseases are expressed in olfactory neurons. These findings raise the question on whether a relationship exists between the mechanisms of protein aggregation that occur in the olfactory bulb during the early stage of the neurodegenerative process and the protein misfolding occurring in the olfactory neuroepithelium

    Care pathways models and clinical outcomes in disorders of consciousness

    Get PDF
    Objective: Patients with Disorders of consciousness, are persons with extremely low functioning levels and represent a challenge for health care systems due to their high needs of facilitating environmental factors. Despite a common Italian health care path-way for these patients, no studies have analyzed information on how each region have implemented it in its welfare system correlating data with patients’ clinical outcomes. Materials and Methods: A multicenter observational pilot study was realized. Clinicians collected data on the care pathways of patients with Disorder of consciousness by ask-ing 90 patients’ caregivers to complete an ad hoc questionnaire through a structured phone interview. Questionnaire consisted of three sections: sociodemographic data, description of the care pathway done by the patient, and caregiver evaluation of health services and information received.Results: Seventy- three patients were analyzed. Length of hospital stay was different across the health care models and it was associated with improvement in clinical diag-nosis. In long- term care units, the diagnosis at admission and the number of caregivers available for each patient (median value=3) showed an indirect relationship with worsening probability in clinical outcome. Caregivers reported that communication with professionals (42%) and the answer to the need of information were the most critical points in the acute phase, whereas presence of Non- Governmental Organizations (25%) and availability of psychologists for caregivers (21%) were often missing during long-term care. The 65% of caregivers reported they did not know the UN Convention on the Rights of Persons with Disabilities. Conclusion: This study highlights relevant differences in analyzed models, despite a recommended national pathway of care. Future public health considerations and ac-tions are needed to guarantee equity and standardization of the care process in all European countries
    • …
    corecore