464 research outputs found

    New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

    Get PDF
    We have measured the beam-normal single-spin asymmetry An in the elastic scattering of 1-3 GeV transversely polarized electrons from H-1 and for the first time from He-4, C-12, and Pb-208. For H-1, He-4, and C-12, the measurements are in agreement with calculations that relate A(n) to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the Pb-208 result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new A(n) measurements might emerge as a new and sensitive probe of the structure of heavy nuclei

    Precision Measurement of the Proton and Deuteron Spin Structure Functions g\u3csub\u3e2\u3c/sub\u3e and Asymmetries A\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    We have measured the spin struction functions g2(p) and g(2)(d) and the virtual photon asymmetries A(2)(p) and A(2)(d) over the kinetmatic range 0.02 less than or equal to x less than or equal to 0.8 and 0.7 less than or equal to Q2 less than or equal to 20 GeV2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and (LiD)-Li-6 targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d(2)(p) and d(2)(n) are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x --\u3e 0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the A2 \u3c √ R(1 +A1)/2 limit

    Qweak: A Precision Measurement of the Proton's Weak Charge

    Full text link
    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q2Q^2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Qwp=1−4sin⁡2ξwQ_w^p = 1-4 \sin^2 \theta_w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003 proceeding

    Inclusive Electron-Nucleus Scattering at Large Momentum Transfer

    Get PDF
    Inclusive electron scattering is measured with 4.045 GeV incident beam energy from C, Fe and Au targets. The measured energy transfers and angles correspond to a kinematic range for Bjorken x>1x > 1 and momentum transfers from Q2=1−7(GeV/c)2Q^2 = 1 - 7 (GeV/c)^2. When analyzed in terms of the y-scaling function the data show for the first time an approach to scaling for values of the initial nucleon momenta significantly greater than the nuclear matter Fermi-momentum (i.e. >0.3> 0.3 GeV/c).Comment: 5 pages TEX, 5 Postscript figures also available at http://www.krl.caltech.edu/preprints/OAP.htm

    Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor

    Get PDF
    We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2= 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/- 0.58(sys)ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Measurement of GEp/GMp in ep -> ep to Q2 = 5.6 GeV2

    Full text link
    The ratio of the electric and magnetic form factors of the proton, GEp/GMp, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic e⃗p→ep⃗\vec ep \to e\vec p reaction. The new data presented in this article span the range 3.5 < Q2 < 5.6 GeV2 and are well described by a linear Q2 fit. Also, the ratio QF2p/F1p reaches a constant value above Q2=2 GeV2.Comment: 6 pages, 4 figures Added two names to the main author lis

    Measurement of the vector analyzing power in elastic electron-proton scattering as a probe of double photon exchange amplitudes

    Get PDF
    We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q^2 = 0.1 (GeV/c)^2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electromagnetic interactions with hadronic systems. We find a non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor

    Get PDF
    We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2= 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/- 0.58(sys)ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Cross Section Measurement of Charged Pion Photoproduction from Hydrogen and Deuterium

    Get PDF
    We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams
    • 

    corecore