Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2

P. L. Anthony

R. G. Arnold
T. Averett
H. R. Band
N. Benmouna

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs
Part of the Astrophysics and Astronomy Commons, Elementary Particles and Fields and String Theory Commons, and the Nuclear Commons

Original Publication Citation

Anthony, P. L., Arnold, R. G., Averett, T., Band, H. R., Benmouna, N., Boeglin, W., . . . Zihlmann, B. (2003). Precision measurement of the proton and deuteron spin structure functions g_{2} and asymmetries A_{2}. Physics Letters B, 553(1-2), 18-24. doi:https://doi.org/10.1016/S0370-2693(02)03015-0

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Authors

P. L. Anthony, R. G. Arnold, T. Averett, H. R. Band, N. Benmouna, W. Boeglin, H. Borel, P. E. Bosted, S. L. Bültmann, G. R. Court, C. E. Hyde-Wright, S. E. Kuhn, F. Sabatie, and F. R. Wesselmann

Precision measurement of the proton and deuteron spin structure functions g_{2} and asymmetries $A_{2}{ }^{\text {m }}$

E155 Collaboration

P.L. Anthony ${ }^{1}$, R.G. Arnold ${ }^{\text {a,1 }}$, T. Averett ${ }^{\mathrm{o}}$, H.R. Band ${ }^{\mathrm{p}}$, N. Benmouna ${ }^{\text {a,2 } 2}$, W. Boeglin ${ }^{\mathrm{e}}$, H. Borel ${ }^{\text {d }}$, P.E. Bosted ${ }^{\text {a,1 }}$, S.L. Bültmann ${ }^{\text {n,3 }}$, G.R. Court ${ }^{\text {f }}$, D. Crabb ${ }^{\text {n }}$, D. Day ${ }^{\text {n }}$, P. Decowski ${ }^{\text {k }}$, P. DePietro ${ }^{\text {a }}$, H. Egiyan ${ }^{\text {o }}$, R. Erbacher ${ }^{\text {1,4 }}$, R. Erickson ${ }^{1}$, R. Fatemi ${ }^{\text {n }}$, E. Frlez ${ }^{\text {n }}$, K.A. Griffioen ${ }^{\text {o }}$, C. Harris ${ }^{\text {n }}$, E.W. Hughes ${ }^{\text {b }}$, C. Hyde-Wright ${ }^{\text {i }}$, G. Igo ${ }^{\text {c }}$, J. Johnson ${ }^{1}$, P. King ${ }^{\text {o }}$, K. Kramer $^{\text {o }}$, S.E. Kuhn ${ }^{\text {i }}$, D. Lawrence ${ }^{\text {h }}$, Y. Liang ${ }^{\text {a }}$, R. Lindgren ${ }^{\text {n }}$, R.M. Lombard-Nelsen ${ }^{\text {d }}$, P. McKee ${ }^{\text {n }}$, D.E. McNulty ${ }^{\text {n }}$, W. Meyer ${ }^{\text {n,5 }}$, G.S. Mitchell ${ }^{\mathrm{p}, 6}$, J. Mitchell ${ }^{\mathrm{m}}$, M. Olson ${ }^{\mathrm{j}}$, S. Penttila ${ }^{\text {g }}$, G.A. Peterson ${ }^{\text {h }}$, R. Pitthan ${ }^{1}$, D. Pocanic ${ }^{\mathrm{n}}$, R. Prepost ${ }^{\mathrm{p}}$, C. Prescott ${ }^{1}$, B.A. Raue ${ }^{\mathrm{e}}$, D. Reyna ${ }^{\mathrm{a}, 7}$, P. Ryan ${ }^{\mathrm{o}}$, L.S. Rochester ${ }^{1}$, S. Rock ${ }^{\text {a,1 }}$, O. Rondon-Aramayo ${ }^{\text {n }}$, F. Sabatie ${ }^{\text {i,8 }}$, T. Smith ${ }^{\text {g }}$, L. Sorrell ${ }^{\text {a }}$, S.St. Lorant ${ }^{1}$, Z. Szalata ${ }^{\text {a,8 }}$, Y. Terrien ${ }^{\text {d }}$, A. Tobias ${ }^{\text {n }}$, T. Toole ${ }^{\mathrm{a}, 10}$, S. Trentalange ${ }^{\mathrm{c}}$, F.R. Wesselmann ${ }^{\mathrm{i}}$, T.R. Wright ${ }^{\mathrm{p}}$, M. Zeier ${ }^{\text {n }}$, H. Zhu ${ }^{\text {n }}$, B. Zihlmann ${ }^{\text {n }}$
${ }^{\text {a }}$ The American University, Washington, DC 20016, USA
${ }^{\mathrm{b}}$ California Institute of Technology, Pasadena, CA 91125, USA
${ }^{\text {c }}$ University of California, Los Angeles, CA 90095, USA
${ }^{\text {d }}$ DAPNIA-Service de Physique Nucleaire, CEA-Saclay, F-91191 Gif-sur-Yvette cedex, France
${ }^{\text {e }}$ Florida International University, Miami, FL 33199, USA
${ }^{f}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
g Los Alamos National Laboratory, Los Alamos, NM 87545, USA
${ }^{\text {h }}$ University of Massachusetts, Amherst, MA 01003, USA
${ }^{\text {i }}$ Old Dominion University, Norfolk, VA 23529, USA
${ }^{\mathrm{j}}$ St. Norbert College, De Pere, WI 54115, USA
${ }^{\mathrm{k}}$ Smith College, Northampton, MA 01063, USA
${ }^{1}$ Stanford Linear Accelerator Center, Stanford, CA 94309, USA
${ }^{m}$ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
${ }^{\mathrm{n}}$ University of Virginia, Charlottesville, VA 22901, USA
${ }^{\circ}$ The College of William and Mary, Williamsburg, VA 23187, USA
${ }^{\mathrm{p}}$ University of Wisconsin, Madison, WI 53706, USA

Abstract

We have measured the spin structure functions g_{2}^{p} and g_{2}^{d} and the virtual photon asymmetries A_{2}^{p} and A_{2}^{d} over the kinematic range $0.02 \leqslant x \leqslant 0.8$ and $0.7 \leqslant Q^{2} \leqslant 20 \mathrm{GeV}^{2}$ by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH_{3} and ${ }^{6} \mathrm{LiD}$ targets. Our measured g_{2} approximately follows the twist- 2 Wandzura-Wilczek calculation. The twist- 3 reduced matrix elements d_{2}^{p} and d_{2}^{n} are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as $x \rightarrow 0$. The Efremov-LeaderTeryaev integral is consistent with zero within our measured kinematic range. The absolute value of A_{2} is significantly smaller than the $A_{2}<\sqrt{R\left(1+A_{1}\right) / 2}$ limit.

© 2002 Elsevier Science B.V. Open access under CC BY license.
PACS: 13.60.Hb; 13.88.+e; 24.70.+s; 25.30.Fj

The deep inelastic spin structure functions of the nucleons, $g_{1}\left(x, Q^{2}\right)$ and $g_{2}\left(x, Q^{2}\right)$, depend on the spin distribution of the partons and their correlations. The function g_{1} can be primarily understood in terms of the quark parton model (QPM) and perturbative QCD with higher twist terms at low Q^{2}. The function g_{2} is of particular interest since it has contributions from quark-gluon correlations and other higher twist terms at leading order in Q^{2} which cannot be described perturbatively. By interpreting g_{2} using the operator product expansion (OPE) [1,2], it is possible to study contributions to the nucleon spin structure beyond the simple QPM.

[^0]The structure function g_{2} can be written [3]:
$g_{2}\left(x, Q^{2}\right)=g_{2}^{W W}\left(x, Q^{2}\right)+\overline{g_{2}}\left(x, Q^{2}\right)$
in which
$g_{2}^{W W}\left(x, Q^{2}\right)=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} \frac{g_{1}\left(y, Q^{2}\right)}{y} d y$,
$\overline{g_{2}}\left(x, Q^{2}\right)=-\int_{x}^{1} \frac{\partial}{\partial y}\left(\frac{m}{M} h_{T}\left(y, Q^{2}\right)+\xi\left(y, Q^{2}\right)\right) \frac{d y}{y}$,
x is the Bjorken scaling variable and Q^{2} is the absolute value of the virtual photon four-momentum squared. The twist-2 term $g_{2}^{W W}$ was derived by Wandzura and Wilczek [4] and depends only on g_{1} [5-10]. The function $h_{T}\left(x, Q^{2}\right)$ is an additional twist- 2 contribution [3,11] that depends on the transverse polarization density in the nucleon. The h_{T} contribution to $\overline{g_{2}}$ is suppressed by the ratio of the quark to nucleon masses m / M [11] and its effect is thus small for up and down quarks. The twist-3 part (ξ) comes from quark-gluon correlations and is the main focus of our study. Lowprecision measurements of g_{2} and A_{2} exist for the proton and deuteron [12-14], as well as for the neutron [7,15]. In this Letter, we report new, precise measurements of g_{2} and A_{2} for the proton and deuteron.

Electron beams with energies of 29.1 and 32.3 GeV and longitudinal polarizations of $P_{b}=(83.2 \pm 3.0) \%$ struck approximately transversely polarized NH_{3} [6] (average polarization $\left\langle P_{t}\right\rangle=0.70$) or ${ }^{6} \mathrm{LiD}[16]\left(\left\langle P_{t}\right\rangle=\right.$ $0.22)$ targets. The beam helicity was randomly chosen pulse by pulse. Scattered electrons were detected in three independent spectrometers centered at 2.75°, 5.5° and 10.5°. The two small-angle spectrometers
were the same as in SLAC E155 [9], while the largeangle spectrometer had additional hodoscopes and a more efficient pre-radiator shower counter. Further information on the experimental apparatus can be found in Refs. $[6,8,9]$. The approximately equal amounts of data taken with the two beam energies and opposites signs of target polarization gave consistent results.

The measured asymmetry, \tilde{A}_{\perp}, differs from transverse asymmetry A_{\perp} because the target polarizations were not exactly perpendicular to the beam line. It was determined using

$$
\begin{gather*}
\tilde{A}_{\perp}=\frac{1}{f_{\mathrm{RC}}}\left[\frac{C_{1}}{f P_{t}}\left(\left(\frac{N_{L}-N_{R}}{N_{L}+N_{R}}\right) \frac{1}{P_{b}}-A_{\mathrm{EW}}\right)\right. \\
\left.+C_{2} \frac{\sigma_{p}}{\sigma_{d}} \tilde{A}_{\perp}^{p}\right]+A_{\mathrm{RC}}, \tag{2}
\end{gather*}
$$

where N_{L} and N_{R} are the measured counting rates from the two beam helicities, including small corrections for pion and charge symmetric backgrounds, dead-time and tracking efficiency, and $A_{\text {EW }}$ is the electroweak asymmetry ($\approx 8 \times 10^{-5} Q^{2}$). The target dilution factor, f, is the fraction of free polarizable protons (≈ 0.13) or deuterons (≈ 0.18) for a given spectrometer acceptance. For the proton target, the nuclear correction $C_{1} \approx 0.98$ is due to the polarization of the ${ }^{15} \mathrm{~N}$ and $C_{2}=0$. The deuteron data were extracted from the ${ }^{6} \mathrm{LiD}$ results by applying a slightly x-dependent nuclear correction $C_{1} \approx 0.52$ to account for the lithium and deuterium nuclear wave functions with ${ }^{6} \mathrm{Li} \sim \alpha+d$ [16]. An additional correction $C_{2}(x) \approx-0.042$ accounts for the $\sim 4 \%$ polarized ${ }^{7} \mathrm{Li}$ in the target. The quantities f_{RC} and A_{RC} are radiative corrections determined using a method similar to E143 [6]. The quantity $1-f_{\mathrm{RC}}$ was calculated as the proportion of events in a bin coming from elastic and quasielastic tails, and A_{RC} included polarization-dependent elastic and quasi-elastic as well as inelastic and vertex corrections. The radiative dilution factor f_{RC} has the effect of increasing the statistical errors at low x. Uncertainties in the radiative corrections were estimated by varying the input models over a range consistent with the measured data.

Because \tilde{A}_{\perp} is close to zero, the relative statistical errors are always greater than 25%. The uncertainties due to target and beam polarization and dilution factor combined are 5.1% (proton) and 6.2% (deuteron).

They are multiplicative and small compared to the statistical errors.

We determined $g_{2}\left(x, Q^{2}\right)$ and $A_{2}\left(x, Q^{2}\right)$ from \tilde{A}_{\perp} (dominant contribution) and the previously measured g_{1} (small contribution) using:

$$
\begin{align*}
g_{2}= & \frac{y F_{1}}{2 E^{\prime}(\cos \Theta-\cos \alpha)} \\
& \times\left[\tilde{A}_{\perp} \nu \frac{(1+\epsilon R)}{1-\epsilon}-\frac{g_{1}}{F_{1}}\left[E \cos \alpha+E^{\prime} \cos \Theta\right]\right] \tag{3}
\end{align*}
$$

$A_{2}=\gamma\left(g_{1}+g_{2}\right) / F_{1}$,
where $\cos \Theta=\sin \alpha \sin \theta \cos \Phi+\cos \alpha \cos \theta$, θ is the spectrometer angle, Φ is the angle between the spin plane and the scattering plane, $\alpha=92.4^{\circ}$ is the angle of the target polarization with respect to the beam direction, $y=v / E, v=E-E^{\prime}, E$ and E^{\prime} are the incident and scattered electron energies, $\epsilon^{-1}=1+2\left[1+1 / \gamma^{2}\right] \tan ^{2}(\theta / 2), \gamma=\sqrt{Q^{2} / \nu^{2}}$ and $F_{1}=F_{2}\left(1+4 M^{2} x^{2} / Q^{2}\right) /[2 x(1+R)]$. We used a new Q^{2}-dependent parameterization of g_{1} [9] world data, the NMC fit to $F_{2}\left(x, Q^{2}\right)$ [17] and the SLAC fit to $R\left(x, Q^{2}\right)=\sigma_{L} / \sigma_{T}$ [18]. The structure functions for p, d, and n are related by $g_{2}^{d}=\left(g_{2}^{p}+g_{2}^{n}\right)(1-$ $\left.1.5 \omega_{D}\right) / 2$, where $\omega_{D}=0.05$, the fraction of D-wave in the deuteron wave function.

Results for A_{2} and $x g_{2}$ for the three spectrometers and two energies are given in Table 1 with statistical errors. The systematic error on $x g_{2}$ is much smaller than the statistical error and is given approximately by $a+b x$ where $a_{p}\left(a_{d}\right)=0.0016(0.0009)$ and $b_{p}\left(b_{d}\right)=$ $-0.0012(-0.0008)$. It includes the systematic errors on \tilde{A}_{\perp} as well as a 5% normalization uncertainty on g_{1}. The data cover the kinematic range $0.02 \leqslant x \leqslant 0.8$ and $0.7 \leqslant Q^{2} \leqslant 20 \mathrm{GeV}^{2}$ with an average Q^{2} of $5 \mathrm{GeV}^{2}$. Fig. 1 shows the values of $x g_{2}$ as a function of Q^{2} for several values of x along with results from E143 [6] and E155 [14]. The data approximately follow the Q^{2} dependence of $g_{2}^{W W}$ (solid curve), although for the proton, the data points are lower than $g_{2}^{W W}$ at low and intermediate x and higher at high x. The predictions of Stratmann [19] are closer to the data.

To get average values at the average Q^{2} for each x bin we used the Q^{2} dependence of $g_{2}^{W W}: g_{2}\left(Q_{\text {avg }}^{2}\right)=$ $g_{2}\left(Q_{\text {exp }}^{2}\right)-g_{2}^{W W}\left(Q_{\text {exp }}^{2}\right)+g_{2}^{W W}\left(Q_{\text {avg }}^{2}\right)$. These averaged results for A_{2} and $x g_{2}$ are listed at the bottom

Table 1
Results for A_{2} and $x g_{2}$ with statistical errors for proton and deuteron at the measured x and $Q^{2}\left[(\mathrm{GeV} / c)^{2}\right]$. The systematic error on $x g_{2}$ is given by $a+b x$, where $a_{p}\left(a_{d}\right)=0.0016(0.0009)$ and $b_{p}\left(b_{d}\right)=-0.0012(-0.0008)$

	$\langle x\rangle$	$\left\langle Q^{2}\right\rangle$	A_{2}^{p}	$x g_{2}^{p}$	A_{2}^{d}	$x g_{2}^{d}$
$\theta \approx 2.75^{\circ} ; E=29.1 \mathrm{GeV}$	0.021	0.80	-0.015 ± 0.012	-0.037 ± 0.026	0.003 ± 0.017	0.009 ± 0.036
	0.026	0.90	-0.009 ± 0.008	-0.026 ± 0.015	0.010 ± 0.011	0.020 ± 0.021
	0.038	1.10	0.016 ± 0.006	0.020 ± 0.010	-0.013 ± 0.009	-0.021 ± 0.014
	0.061	1.30	0.026 ± 0.008	0.017 ± 0.009	-0.017 ± 0.011	-0.024 ± 0.013
	0.098	1.60	0.014 ± 0.010	-0.011 ± 0.009	0.025 ± 0.015	0.016 ± 0.013
	0.155	1.80	0.061 ± 0.015	0.005 ± 0.010	0.008 ± 0.024	-0.005 ± 0.013
	0.245	2.00	0.098 ± 0.024	-0.005 ± 0.010	0.058 ± 0.038	0.002 ± 0.014
	0.380	2.10	0.258 ± 0.064	0.007 ± 0.018	-0.008 ± 0.105	-0.031 ± 0.024
$\theta \approx 5.5^{\circ} ; E=29.1 \mathrm{GeV}$	0.061	2.70	0.033 ± 0.036	0.045 ± 0.061	0.059 ± 0.052	0.094 ± 0.084
	0.098	3.50	0.029 ± 0.009	0.019 ± 0.013	0.000 ± 0.014	-0.009 ± 0.018
	0.155	4.40	0.020 ± 0.008	-0.017 ± 0.009	0.024 ± 0.012	0.012 ± 0.012
	0.245	5.30	0.042 ± 0.011	-0.021 ± 0.008	0.037 ± 0.017	0.000 ± 0.011
	0.380	6.10	0.035 ± 0.019	-0.043 ± 0.007	0.086 ± 0.032	0.002 ± 0.010
	0.580	6.70	0.107 ± 0.045	-0.020 ± 0.006	0.137 ± 0.082	-0.004 ± 0.008
	0.780	7.00	-0.131 ± 0.130	-0.012 ± 0.003	0.444 ± 0.232	0.003 ± 0.004
$\theta \approx 10.5^{\circ} ; E=29.1 \mathrm{GeV}$	0.155	7.10	0.030 ± 0.018	-0.001 ± 0.024	-0.023 ± 0.032	-0.042 ± 0.039
	0.245	9.90	0.018 ± 0.016	-0.036 ± 0.016	0.029 ± 0.031	0.006 ± 0.025
	0.380	13.10	0.054 ± 0.025	-0.026 ± 0.013	0.035 ± 0.052	-0.006 ± 0.021
	0.580	16.30	0.090 ± 0.068	-0.010 ± 0.010	0.031 ± 0.156	-0.009 ± 0.017
	0.780	18.40	-0.182 ± 0.259	-0.008 ± 0.005	0.795 ± 0.625	0.010 ± 0.009
$\theta \approx 2.75^{\circ}, E=32.3 \mathrm{GeV}$	0.021	0.80	-0.001 ± 0.008	-0.007 ± 0.020	0.003 ± 0.014	0.006 ± 0.031
	0.026	0.90	0.002 ± 0.006	-0.004 ± 0.014	-0.006 ± 0.011	-0.010 ± 0.022
	0.038	1.10	0.007 ± 0.005	0.001 ± 0.009	0.003 ± 0.008	0.006 ± 0.014
	0.061	1.30	0.019 ± 0.006	0.009 ± 0.008	0.015 ± 0.010	0.015 ± 0.013
	0.098	1.60	0.021 ± 0.009	-0.004 ± 0.008	-0.004 ± 0.014	-0.011 ± 0.013
	0.155	1.80	0.045 ± 0.013	-0.008 ± 0.009	0.045 ± 0.021	0.015 ± 0.013
	0.245	2.00	0.076 ± 0.020	-0.018 ± 0.009	0.063 ± 0.034	0.003 ± 0.014
	0.380	2.10	0.209 ± 0.053	-0.004 ± 0.017	0.076 ± 0.095	-0.011 ± 0.025
$\theta \approx 5.5^{\circ} ; E=32.3 \mathrm{GeV}$	0.061	2.70	-0.015 ± 0.023	-0.041 ± 0.042	0.046 ± 0.035	0.077 ± 0.061
	0.098	3.50	0.017 ± 0.007	0.000 ± 0.011	0.004 ± 0.011	-0.003 ± 0.016
	0.155	4.40	0.033 ± 0.007	-0.002 ± 0.008	0.028 ± 0.010	0.015 ± 0.011
	0.245	5.30	0.041 ± 0.009	-0.023 ± 0.007	0.034 ± 0.015	0.003 ± 0.010
	0.380	6.10	0.069 ± 0.016	-0.029 ± 0.007	0.000 ± 0.028	-0.024 ± 0.009
	0.580	6.70	0.126 ± 0.038	-0.016 ± 0.005	0.078 ± 0.074	-0.008 ± 0.007
	0.780	7.00	0.177 ± 0.110	-0.004 ± 0.003	0.170 ± 0.210	-0.002 ± 0.004
$\theta \approx 10.5^{\circ} ; E=32.3 \mathrm{GeV}$	0.155	7.10	0.027 ± 0.013	0.001 ± 0.019	0.025 ± 0.022	0.019 ± 0.029
	0.245	9.90	0.026 ± 0.012	-0.029 ± 0.013	0.006 ± 0.021	-0.016 ± 0.018
	0.380	13.10	0.033 ± 0.019	-0.034 ± 0.010	-0.010 ± 0.035	-0.028 ± 0.015
	0.580	16.30	0.000 ± 0.048	-0.024 ± 0.008	0.215 ± 0.105	0.013 ± 0.012
	0.780	18.40	-0.146 ± 0.191	-0.008 ± 0.004	-0.527 ± 0.424	-0.011 ± 0.007
AVERAGE	0.021	0.80	-0.005 ± 0.007	-0.018 ± 0.016	0.003 ± 0.011	0.008 ± 0.023
	0.026	0.90	-0.003 ± 0.005	-0.014 ± 0.010	0.002 ± 0.008	0.006 ± 0.015
	0.038	1.10	0.011 ± 0.004	0.010 ± 0.007	-0.004 ± 0.006	-0.007 ± 0.010
	0.061	1.40	0.020 ± 0.005	0.011 ± 0.006	0.003 ± 0.007	-0.001 ± 0.009
	0.098	2.30	0.023 ± 0.004	-0.003 ± 0.005	0.006 ± 0.007	-0.001 ± 0.007
	0.155	3.70	0.036 ± 0.004	-0.007 ± 0.004	0.026 ± 0.007	0.009 ± 0.006
	0.245	5.00	0.048 ± 0.005	-0.022 ± 0.004	0.036 ± 0.009	0.000 ± 0.005
	0.380	7.10	0.064 ± 0.009	-0.031 ± 0.004	0.029 ± 0.017	-0.015 ± 0.005
	0.580	8.40	0.092 ± 0.023	-0.018 ± 0.003	0.122 ± 0.047	-0.004 ± 0.005
	0.780	8.20	0.004 ± 0.074	-0.007 ± 0.002	0.228 ± 0.142	0.000 ± 0.002

Fig. 1. $x g_{2}$ for the proton and deuteron as a function of Q^{2} for selected values of x. Data are for this experiment (solid), E143 [6] (open diamond) and E155 [14] (open square). The errors are statistical; the systematic errors are small. The curves show $x g_{2}^{W W}$ (solid) and the bag model calculation of Stratmann [19] (dash-dot).
of Table 1. Fig. 2 shows the averaged $x g_{2}$ of this experiment along with $x g_{2}^{W W}$ calculated using our parameterization of g_{1}. The combined new data for p disagree with $g_{2}^{W W}$ with a $\chi^{2} /$ dof of 3.1 for 10 degrees of freedom. For d the new data agree with $g_{2}^{W W}$ with a $\chi^{2} /$ dof of 1.2 for 10 dof. The data for g_{2}^{p} are also inconsistent with zero ($\chi^{2} /$ dof $=15.5$) while g_{2}^{d} differs from zero only at $x \sim 0.4$. Also shown in Fig. 2 is the Bag Model calculation of Stratmann [19] which is in good agreement with the data, chiral soliton model calculations [20,21] which are too negative at $x \sim 0.4$ and the Bag Model calculation of Song [11] which is in clear disagreement with the data.

The average values of $A_{2}(x)$, shown in Fig. 3, are consistent with zero at low x, increasing to about 0.1 at the highest x, significantly different than zero. A_{2}^{p} is many standard deviations lower than the Soffer limit [22] of $\left|A_{2}\right|<\sqrt{R\left(1+A_{1}\right) / 2}$ for all values of x. The same is true for A_{2}^{d}, except at the highest x value, where the error is large.

The OPE allows us to write the hadronic matrix element in deep inelastic scattering in terms of a series of renormalized operators of increasing twist [1,2].

Fig. 2. The Q^{2}-averaged structure function $x \mathrm{~g}_{2}$ from this experiment (solid circle), E143 [13] (open diamond) and E155 [14] (open square). The errors are statistical; systematic errors are shown as the width of the bar at the bottom. Also shown is our twist-2 $\mathrm{g}_{2}^{W W}$ at the average Q^{2} of this experiment at each value of x (solid line), the bag model calculations of Stratmann [19] (dash-dot-dot) and Song [11] (dot) and the chiral soliton models of Weigel and Gamberg [20] (dash dot) and Wakamatsu [21] (dash).

The moments of g_{1} and g_{2} for even $n \geqslant 2$ at fixed Q^{2} can be related to twist-3 reduced matrix element, d_{n}, and higher twist terms which are suppressed by powers of $1 / Q$. Neglecting quark mass terms we find that:

$$
\begin{align*}
d_{n} & =2 \int_{0}^{1} d x x^{n}\left[\frac{n+1}{n} g_{2}\left(x, Q^{2}\right)+g_{1}\left(x, Q^{2}\right)\right] \tag{5}\\
& =2 \frac{n+1}{n} \int_{0}^{1} d x x^{n} \overline{g_{2}}\left(x, Q^{2}\right) .
\end{align*}
$$

The matrix element d_{n} measures deviations of g_{2} from the twist-2 $g_{2}^{W W}$ term. Note that some authors $[2,23]$ define d_{n} with an additional factor of two. We calculated d_{n} using $\overline{g_{2}}\left(x, Q^{2}\right)$ (see Eq. (5)) with the assumption that $\overline{g_{2}}(x)$ is independent of Q^{2} in the measured region. This is not unreasonable since d_{n} depends only logarithmically on Q^{2} [1]. The part of the integral for x below the measured region was assumed to be zero because of the x^{2} suppression. For

Fig. 3. The asymmetry A_{2} for all spectrometers combined (solid circle) and data from E143 [13] (open diamond), E155 [14] (open square), and SMC [12] (open circles). The errors are statistical; the systematic errors are negligible. Also shown is $A_{2}^{W W}$ calculated from the twist- $2 \mathrm{~g}_{2}^{W W}$ at the average Q^{2} of this experiment at each value of x (solid line). The upper Soffer limit [22] is the dashed curve at the upper right.
$x \geqslant 0.8$ we used $\overline{g_{2}} \propto(1-x)^{m}$ where $m=2$ or 3 , normalized to the data for $x \geqslant 0.5$. Because $\overline{g_{2}}$ is small at high x, the contribution was negligible for both cases. We obtained values of $d_{2}^{p}=0.0025 \pm 0.0016 \pm$ 0.0010 and $d_{2}^{d}=0.0054 \pm 0.0023 \pm 0.0005$ at an average Q^{2} of $5 \mathrm{GeV}^{2}$. We combined these results with those from SLAC experiments on the neutron (E142 [7] and E154 [15]) and proton and deuteron (E143 [6] and E155 [14]) to obtained average values $d_{2}^{p}=0.0032 \pm 0.0017$ and $d_{2}^{n}=0.0079 \pm 0.0048$. These are consistent with zero (no twist-3) to within 2 standard deviations. The values of the 2 nd moments alone are: $\int_{0}^{1} d x x^{2} g_{2}\left(x, Q^{2}\right)=-0.0072 \pm 0.0005 \pm$ $0.0003(p)$ and $-0.0019 \pm 0.0007 \pm 0.0001(d)$.

Fig. 4 shows the experimental values of d_{2} for proton and neutron with their error, plotted along with theoretical models from left to right: Bag Models (Song [11], Stratmann [19], and Ji [24]); sum rules (Stein [25], BBK [26], Ehrnsperger [27]); chiral soliton models [20,21]; and lattice QCD calculations ($Q^{2}=5 \mathrm{GeV}^{2}, \beta=6.4$) [23]. The lattice and chi-

Fig. 4. The twist-3 matrix element d_{2} for the proton and neutron from the combined data from this and other SLAC experiments (E142 [7], E143 [6], E154 [15] and E155 [14] (DATA). The region between the dashed lines indicates the experimental errors. Also shown are theoretical model values from left to right: bag models [11,19,24], QCD Sum Rules [25-27], Lattice QCD [23] and chiral soliton models [20,21].
ral calculations are in good agreement with the proton data and two standard deviations below the neutron data. The sum rule calculations are significantly lower than the data. The non-singlet $=3 \cdot\left(d_{2}^{p}-d_{2}^{n}\right)=$ -0.0141 ± 0.0170 is consistent with an instanton vacuum calculation of ~ 0.001 [28].

The Burkhardt-Cottingham sum rule [29] for g_{2} at large $Q^{2}, \int_{0}^{1} g_{2}(x) d x=0$, was derived from virtual Compton scattering dispersion relations. It does not follow from the OPE since $n=0$. Its validity depends on the lack of singularities for g_{2} at $x=0$, and a dramatic rise of g_{2} at low x could invalidate the sum rule [30]. We evaluated the Burkhardt-Cottingham integral in the measured region of $0.02 \leqslant x \leqslant 0.8$ at $Q^{2}=5 \mathrm{GeV}^{2}$. The results for the proton and deuteron are $-0.044 \pm 0.008 \pm 0.003$ and $-0.008 \pm 0.012 \pm$ 0.002 , respectively. Averaging with the E143 and E155 results which cover a slightly more restrictive x range gives -0.042 ± 0.008 and -0.006 ± 0.011. This does not represent a conclusive test of the sum rule because the behavior of g_{2} as $x \rightarrow 0$ is unknown. However, if we assume that $g_{2}=g_{2}^{W W}$ for $x<0.02$,
and use the relation $\int_{0}^{x} g_{2}^{W W}(y) d y=x\left[g_{2}^{W W}(x)+\right.$ $\left.g_{1}(x)\right]$, there is an additional contribution of 0.020 (0.004) for the proton (deuteron).

The Efremov-Leader-Teryaev (ELT) sum rule [31] involves the valence quark contributions to g_{1} and $g_{2}: \int_{0}^{1} x\left[g_{1}^{V}(x)+2 g_{2}^{V}(x)\right] d x=0$. Assuming that the sea quarks are the same in protons and neutrons, the sum rule takes a form $\int_{0}^{1} x\left[g_{1}^{p}(x)+2 g_{2}^{p}(x)-g_{1}^{n}(x)-\right.$ $\left.2 g_{2}^{n}(x)\right] d x=0$. We evaluated this ELT integral in the measured region using our g_{2} data and the fit to g_{1}. The result at $Q^{2}=5 \mathrm{GeV}^{2}$ is $-0.013 \pm 0.008 \pm 0.002$, consistent with the expected value of zero. Including the data of E143 [6] and E155 [14] leads to $-0.011 \pm$ 0.008 . The extrapolation to $x=0$ is unknown, but is suppressed by a factor of x.

In summary, our results for g_{2} follow approximately the twist- $2 g_{2}^{W W}$ shape, but deviate significantly at some values of x. The values obtained for the twist-3 matrix element d_{2} from this measurement and the SLAC average are less than two standard deviations from zero. The data over the measured range are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as $x \rightarrow 0$. The ELT integral is consistent with zero within our measured kinematic range.

Acknowledgements

We thank the personnel of the SLAC accelerator and Experimental Facilities Departments for their efforts which resulted in the successful completion of the E155X experiment. This work was supported by the Department of Energy; the National Science Foundation; and the Centre National de la Recherche Scientifique and the Commissariat a l'Energie Atomique (French groups).

References

[1] E. Shuryak, A. Vainshtein, Nucl. Phys. B 201 (1982) 141.
[2] R. Jaffe, X. Ji, Phys. Rev. D 43 (1991) 724.
[3] J.L. Cortes, B. Pire, J.P. Ralston, Z. Phys. C 55 (1992) 409.
[4] S. Wandzura, F. Wilczek, Phys. Lett. B 72 (1977) 195.
[5] SMC Collaboration, B. Adeva, et al., Phys. Rev. D 58 (1998) 112001.
[6] E143 Collaboration, K. Abe, et al., Phys. Rev. D 58 (1998) 112003.
[7] E142 Collaboration, P. Anthony, et al., Phys. Rev. D 54 (1996) 6620.
[8] E154 Collaboration, K. Abe, et al., Phys. Rev. Lett. 79 (1997) 26.
[9] E155 Collaboration, P. Anthony, et al., Phys. Lett. B 463 (1999) 339;

E155 Collaboration, P. Anthony, et al., Phys. Lett. B 493 (2000) 19.
[10] HERMES Collaboration, K. Ackerstaff, et al., Phys. Lett. B 404 (1997) 383;
A. Airapetian, et al., Phys. Lett. B 442 (1998) 484.
[11] X. Song, Phys. Rev. D 54 (1996) 1955.
[12] SMC Collaboration, D. Adams, et al., Phys. Lett. B 336 (1994) 125;
SMC Collaboration, D. Adams, et al., Phys. Lett. B 396 (1997) 338.
[13] E143 Collaboration, K. Abe, et al., Phys. Rev. Lett. 76 (1996) 587.
[14] E155 Collaboration, P. Anthony, et al., Phys. Lett. B 458 (1999) 529.
[15] E154 Collaboration, K. Abe, et al., Phys. Lett. B 404 (1997) 377.
[16] S. Bültmann, et al., Nucl. Instrum. Methods A 425 (1999) 23.
[17] NMC Collaboration, M. Arneodo, et al., Phys. Lett. B 364 (1995) 107.
[18] E143 Collaboration, K. Abe, et al., Phys. Lett. B 452 (1999) 194.
[19] M. Stratmann, Z. Phys. C 60 (1993) 763.
[20] H. Weigel, L. Gamberg, Nucl. Phys. A 680 (2000) 48.
[21] M. Wakamatsu, Phys. Lett. B 487 (2000) 118.
[22] J. Soffer, O.V. Teryaev, Phys. Lett. B 490 (2000) 106.
[23] M. Göckeler, et al., Phys. Rev. D 63 (2001) 074506.
[24] X. Ji, P. Unrau, Phys. Lett. B 333 (1994) 228.
[25] E. Stein, et al., Phys. Lett. B 343 (1995) 369.
[26] I. Balitsky, V. Braun, A. Kolesnichenko, Phys. Lett. B 242 (1990) 245;
I. Balitsky, V. Braun, A. Kolesnichenko, Phys. Lett. B 318 (1993) 648, Erratum.
[27] B. Ehrnsperger, A. Schafer, Phys. Rev. D 52 (1995) 2709.
[28] J. Balla, M.V. Polyakov, C. Weiss, Nucl. Phys. B 510 (1998) 327.
[29] H. Burkhardt, W.N. Cottingham, Ann. Phys. 56 (1970) 453.
[30] I.P. Ivanov, et al., Phys. Rep. 320 (1999) 175.
[31] A.V. Efremov, O.V. Teryaev, E. Leader, Phys. Rev. D 55 (1997) 4307.

[^0]: H Work supported by the National Science Foundation Grant PHY 9971942.
 ${ }^{1}$ Present address: University of Massachusetts, Amherst, MA 01003, USA.

 2 Present address: George Washington University, Washington, DC 20052, USA.
 ${ }^{3}$ Present address: Brookhaven National Laboratory, Upton, NY 11973, USA.
 ${ }^{4}$ Present address: Fermi National Accelerator Laboratory, Batavia, IL 60510, USA.
 ${ }^{5}$ Present address: Ruhr-Universität Bochum, Bochum, Germany.
 ${ }^{6}$ Present address: Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
 ${ }^{7}$ Present address: Argonne National Laboratory, Argonne, IL 60439, USA.
 ${ }^{8}$ Present address: DAPNIA-Service de Physique Nucleaire, CEA-Saclay, F-91191 Gif-sur-Yvette cedex, France.
 ${ }^{9}$ Present address: Stanford Linear Accelerator Center, Stanford, CA 94305, USA.
 ${ }^{10}$ Present address: University of Maryland, College Park, MD 20742, USA.

