733 research outputs found
The N-Chain Hubbard model in the Composite Operator Method
We propose a theoretical framework to describe the ladder systems. The
N-chain Hubbard model has been studied within the Composite Operator Method. In
this scheme of calculations the single-particle Green's function for any number
of coupled chains is obtained by solving self-consistently a system of integral
equations.Comment: 6 pages, 1 embedded Postscript figure, LaTeX, to be published in
Physica
Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation
The charge and spin dynamics of the two-dimensional Hubbard model in the
paramagnetic phase is first studied by means of the two-pole approximation
within the framework of the Composite Operator Method. The fully
self-consistent scheme requires: no decoupling, the fulfillment of both Pauli
principle and hydrodynamics constraints, the simultaneous solution of fermionic
and bosonic sectors and a very rich momentum dependence of the response
functions. The temperature and momentum dependencies, as well as the dependency
on the Coulomb repulsion strength and the filling, of the calculated charge and
spin susceptibilities and correlation functions are in very good agreement with
the numerical calculations present in the literature
A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method
We have investigated the antiferromagnetic phase of the 2D, the 3D and the
extended Hubbard models on a bipartite cubic lattice by means of the Composite
Operator Method within a two-pole approximation. This approach yields a fully
self-consistent treatment of the antiferromagnetic state that respects the
symmetry properties of both the model and the algebra. The complete phase
diagram, as regards the antiferromagnetic and the paramagnetic phases, has been
drawn. We firstly reported, within a pole approximation, three kinds of
transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We
have also found a metal-insulator transition, driven by doping, within the
antiferromagnetic phase. This latter is restricted to a very small region near
half filling and has, in contrast to what has been found by similar approaches,
a finite critical Coulomb interaction as lower bound at half filling. Finally,
it is worth noting that our antiferromagnetic gap has two independent
components: one due to the antiferromagnetic correlations and another coming
from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.
Experiment Investigating the Connection between Weak Values and Contextuality
Weak value measurements have recently given rise to a large interest for both
the possibility of measurement amplification and the chance of further quantum
mechanics foundations investigation. In particular, a question emerged about
weak values being proof of the incompatibility between Quantum Mechanics and
Non-Contextual Hidden Variables Theories (NCHVT). A test to provide a
conclusive answer to this question was given in [M. Pusey, Phys. Rev. Lett.
113, 200401 (2014)], where a theorem was derived showing the NCHVT
incompatibility with the observation of anomalous weak values under specific
conditions. In this paper we realize this proposal, clearly pointing out the
strict connection between weak values and the contextual nature of Quantum
Mechanics.Comment: 5 pages, 4 figure
- …