5 research outputs found

    Spray drying for making covalent chemistry II: Synthesis of covalent-organic framework superstructures and related composites

    Get PDF
    Here we report a method that combines the spray-drying technique with a dynamic covalent chemistry process to synthesize zero-dimensional, spherical and microscale superstructures made from the assembly of imine-based COF nanocrystals. This methodology also enables the integration of other functional materials into these superstructures forming COF-based composites.This work was supported by the Spanish MINECO (project PN MAT2015-65354-C2-1-R), the Catalan AGAUR (project 2014 SGR 80), and the ERC under the EU FP7 (ERC-Co 615954). It was also funded by the CERCA Programme/Generalitat de Catalunya. ICN2 acknowledges the support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV-2013-029

    Metal Acetylacetonates as a Source of Metals for Aqueous Synthesis of Metal-Organic Frameworks

    No full text
    Demand continues for environmentally sound, high-yielding processes for the large-scale production of metal-organic frameworks (MOFs). Here we describe the use of metal acetylacetonate complexes as an alternative source of metals for the aqueous synthesis of MOFs. We have synthesized several carboxylate-based Zr(IV)-(UiO-66-NH2, Zr-fumarate, UiO-66-(OH)2, UiO-66-COOH and UiO-66-(COOH)2), Fe(III)-(MIL-88A) and Al(III)-(CAU-10) porous MOFs from their corresponding metal acetylacetonates in good yields (typically >85%) and, in some cases, at room temperature

    Spray drying for making covalent chemistry II : synthesis of covalent-organic framework superstructures and related composites

    No full text
    Here we report a method that combines the spray-drying technique with a dynamic covalent chemistry process to synthesize zero-dimensional, spherical and microscale superstructures made from the assembly of imine-based COF nanocrystals. This methodology also enables the integration of other functional materials into these superstructures forming COF-based composites

    MOF-Beads Containing Inorganic Nanoparticles for the Simultaneous Removal of Multiple Heavy Metals from Water

    No full text
    Pollution of water with heavy metals is a global environmental problem whose impact is especially severe in developing countries. Among water-purification methods, adsorption of heavy metals has proven to be simple, versatile, and cost-effective. However, there is still a need to develop adsorbents with a capacity to remove multiple metal pollutants from the same water sample. Herein, we report the complementary adsorption capacities of metal-organic frameworks (here, UiO-66 and UiO-66-(SH)) and inorganic nanoparticles (iNPs; here, cerium-oxide NPs) into composite materials. These adsorbents, which are spherical microbeads generated in one step by continuous-flow spray-drying, efficiently and simultaneously remove multiple heavy metals from water, including As(III and V), Cd(II), Cr(III and VI), Cu(II), Pb(II), and Hg(II). We further show that these microbeads can be used as a packing material in a prototype of a continuous-flow water treatment system, in which they retain their metal-removal capacities upon regeneration with a gentle acidic treatment. As proof-of-concept, we evaluated these adsorbents for purification of laboratory water samples prepared to independently recapitulate each of two strongly polluted rivers: the Bone (Indonesia) and Buringanga (Bangladesh) rivers. In both cases, our microbeads reduced the levels of all the metal contaminants to below the corresponding permissible limits established by the World Health Organization (WHO). Moreover, we demonstrated the capacity of these microbeads to lower levels of Cr(VI) in a water sample collected from the Sarno River (Italy). Finally, to create adsorbents that could be magnetically recovered following their use in water purification, we extended our spray-drying technique to simultaneously incorporate two types of iNPs (CeO and FeO) into UiO-66-(SH), obtaining CeO/FeO@UiO-66-(SH) microbeads that adsorb heavy metals and are magnetically responsive

    Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures

    No full text
    Altres ajuts: Comunidad de Madrid project S2013/MIT-2740 (PHAMA_2.0). CERCA Programme/Generalitat de CatalunyaSelf-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing
    corecore