16 research outputs found

    SERT and nNOS expression in the choroid plexus of buffalo brain

    No full text
    Serotonin (5-HT) is a well recognized neurotransmitter in the mammalian central nervous system (CNS). It regulates a variety of physiological functions such as sleep, pain, thermoregulation, feeding, sexual behaviour, and mood. An important component of the 5-HT system is the serotonin transporter SERT which regulates 5-HT homeostasis. Nitric oxide (NO) acts as an intercellular messenger in the CNS, and exerts profound effects on the neuroendocrine functions and behaviour. Within neurons, NO is produced by the activity of one of the isoform of NO synthases present in the organism, namely neuronal NO synthase (nNOS). Although a different anatomical distribution of the central neurons synthetizing 5-HT and NO-producing neurons, functional interactions have been demonstrated between the central 5-HT- and NO-generating systems. Recent data indicate that NO may regulate both the intracellular amount of the amine and its intracellular availability by controlling the release and uptake of 5-HT. In this study, we demonstrated the expression of both SERT and nNOS in the choroid plexuses of buffalo brain by scanning electron microscopy (SEM) and biochemical analyses. Our findings may provide some insights into the mechanism by which the choroid plexus specific barrier acts for the regulation of the most basic neural functions

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    No full text
    International audienceAmong the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)BLU(1)_{B-L} gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)BLU(1)_{B-L} gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    No full text
    International audienceAmong the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)BLU(1)_{B-L} gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)BLU(1)_{B-L} gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore