66 research outputs found

    A“Proteoglycan Targeting Strategy” for the Scintigraphic Imaging and Monitoring of the Swarm Rat Chondrosarcoma Orthotopic Model

    Get PDF
    Our lab developed 99mTc-NTP 15-5 radiotracer as targeting proteoglycans (PGs) for the scintigraphic imaging of joint. This paper reports preclinical results of 99mTc-NTP 15-5 imaging of an orthotopic model of Swarm rat chondrosarcoma (SRC). 99mTc-NTP 15-5 imaging of SRC-bearing and sham-operated animals was performed and quantified at regular intervals after surgery and compared to bone scintigraphy and tumoural volume. Tumours were characterized by histology and PG assay. SRC exhibited a significant 99mTc-NTP 15-5 uptake at very early stage after implant (with tumour/muscle ratio of 1.61 ± 0.14), whereas no measurable tumour was evidenced. As tumour grew, mean tumour/muscle ratio was increased by 2.4, between the early and late stage of pathology. Bone scintigraphy failed to image chondrosarcoma, even at the later stage of study. 99mTc-NTP 15-5 imaging provided a suitable set of quantitative criteria for the in vivo characterization of chondrosarcoma behaviour in bone environment, useful for achieving a greater understanding of the pathology

    Stable tumor vessel normalization with pO_{2} increase and endothelial PTEN activation by inositol trispyrophosphate brings novel tumor treatment

    Get PDF
    Tumor hypoxia is a characteristic of cancer cell growth and invasion, promoting angiogenesis, which facilitates metastasis. Oxygen delivery remains impaired because tumor vessels are anarchic and leaky, contributing to tumor cell dissemination. Counteracting hypoxia by normalizing tumor vessels in order to improve drug and radio therapy efficacy and avoid cancer stem-like cell selection is a highly challenging issue. We show here that inositol trispyrophosphate (ITPP) treatment stably increases oxygen tension and blood flow in melanoma and breast cancer syngeneic models. It suppresses hypoxia-inducible factors (HIFs) and proangiogenic/glycolysis genes and proteins cascade. It selectively activates the tumor suppressor phosphatase and tensin homolog (PTEN) in vitro and in vivo at the endothelial cell (EC) level thus inhibiting PI3K and reducing tumor AKT phosphorylation. These mechanisms normalize tumor vessels by EC reorganization, maturation, pericytes attraction, and lowering progenitor cells recruitment in the tumor. It strongly reduces vascular leakage, tumor growth, drug resistance, and metastasis. ITPP treatment avoids cancer stem-like cell selection, multidrug resistance (MDR) activation and efficiently enhances chemotherapeutic drugs activity. These data show that counteracting tumor hypoxia by stably restoring healthy vasculature is achieved by ITPP treatment, which opens new therapeutic options overcoming hypoxia-related limitations of antiangiogenesis-restricted therapies. By achieving long-term vessels normalization, ITPP should provide the adjuvant treatment required in order to overcome the subtle definition of therapeutic windows for in vivo treatments aimed by the current strategies against angiogenesis-dependent tumors

    First in Vivo SPECT Imaging of Mouse Femorotibial Cartilage Using 99mTc-NTP 15-5

    No full text
    This study aimed to report the first single-photon emission computed tomographic (SPECT) imaging of articular cartilage in mice using 99mTc-NTP 15-5 radiotracer. Mice intravenously injected with 99mTc-NTP 15-5 were submitted to (1) dynamic planar imaging, (2) static planar imaging, (3) 1 mm pinhole SPECT acquisition, and (4) dissection. Tomographic reconstruction of SPECT data was performed with a three-dimensional ordered subset expectation maximization algorithm, and slices were reconstructed in three axes. 99mTc-NTP 15-5 rapidly accumulated in the joint, with a peak of radioactivity being reached from 5 minutes postinjection and maintained for at least 90 minutes. Given that bone and muscle did not show any accumulation of the tracer, highly contrasted joint imaging was obtained from 15 minutes postinjection. When 1 mm pinhole SPECT acquisition was focused on the knee, the medial and lateral compartments of both the femoral condyle and tibial plateau were highly delineated, allowing a separate quantitation of tracer accumulation within each component of the femorotibial joint. A good correlation was found between tracer uptake determined by region of interest analysis of both planar and SPECT scans and dissection. This new approach to imaging of cartilage in mice provides joint functionality assessment in vivo, giving a unique opportunity to achieve a greater understanding of cartilage physiology in health and disease

    Seule une augmentation des apports protéiques permet de ralentir la perte de masse maigre chez des rats en vieillissement

    No full text
    This abstract has also been published in Cahiers de Nutrition et de Diététique Volume 48, Supplement 1, December 2013absen

    Technetium-99m radiolabelling of anN-amino-alkyl-benzamide nitrido- and oxo-technetium bis(aminoethanethiol) derivative synthesis and biological results. Potential melanoma tracer agents

    No full text
    International audienceN-(2-diethylaminoethyl)-4-iodobenzamide has been reported to be an excellent agent for malignant melanoma diagnosis by SPECT. To obtain a 99mTc analog, we synthesized a new bis(aminothiol) (BAT) derivative. The benzamide function was conjugated onto a nitrogen of the BAT backbone. This ligand was successfully radiolabelled with both nitrido-technetium and oxo-technetium cores. These complexes were purified by HPLC. Tumour uptake was measured in intravenously injected mice bearing the B16 murine melanoma
    corecore