201 research outputs found

    Contracting outsourced services with collaborative key performance indicators

    Get PDF
    While service outsourcing may benefit from the application of performance‐based contracts (PBCs), the implementation of such contracts is usually challenging. Service performance is often not only dependent on supplier effort but also on the behavior of the buying firm. Existing research on performance‐based contracting provides very limited understanding on how this challenge may be overcome. This article describes a design science research project that develops a novel approach to buyer–supplier contracting, using collaborative key performance indicators (KPIs). Collaborative KPIs evaluate and reward not only the supplier contribution to customer performance but also the customer's behavior to enable this. In this way, performance‐based contracting can also be applied to settings where supplier and customer activities are interdependent, while traditional contracting theories suggest that output controls are not effective under such conditions. In the collaborative KPI contracting process, indicators measure both supplier and customer (buying firm) performance and promote collaboration by being defined through a collaborative process and by focusing on end‐of‐process indicators. The article discusses the original case setting of a telecommunication service provider experiencing critical problems in outsourcing IT services. The initial intervention implementing this contracting approach produced substantial improvements, both in performance and in the relationship between buyer and supplier. Subsequently, the approach was tested and evaluated in two other settings, resulting in a set of actionable propositions on the efficacy of collaborative KPI contracting. Our study demonstrates how defining, monitoring, and incentivizing the performance of specific processes at the buying firm can help alleviate the limitations of traditional performance‐based contracting when the supplier's liability for service performance is difficult to verify

    Environmental enrichment intervention for Rett syndrome: An individually randomised stepped wedge trial

    Get PDF
    Background: Rett syndrome is caused by a pathogenic mutation in the MECP2 gene with major consequences for motor and cognitive development. One of the effects of impaired MECP2 function is reduced production of Brain Derived Neurotrophic Factor (BDNF), a protein required for normal neuronal development. When housed in an enriched environment, MECP2 null mice improved motor abilities and increased levels of BDNF in the brain. We investigated the effects of environmental enrichment on gross motor skills and blood BDNF levels in girls with Rett syndrome. Methods: A genetically variable group of 12 girls with a MECP2 mutation and younger than 6 years participated in a modified individually randomised stepped wedge design study. Assessments were conducted on five occasions, two during the baseline period and three during the intervention period. Gross motor function was assessed using the Rett Syndrome Gross Motor Scale (maximum score of 45) on five occasions, two during the baseline period and three during the intervention period. Blood levels of BDNF were measured at the two baseline assessments and at the end of the intervention period. The intervention comprised motor learning and exercise supplemented with social, cognitive and other sensory experiences over a six-month period. Results: At the first assessment, the mean (SD) age of the children was 3 years (1 year 1 month) years ranging from 1 year 6 months to 5 years 2 months. Also at baseline, mean (SD) gross motor scores and blood BDNF levels were 22.7/45 (9.6) and 165.0 (28.8) ng/ml respectively. Adjusting for covariates, the enriched environment was associated with improved gross motor skills (coefficient 8.2, 95%CI 5.1, 11.2) and a 321.4 ng/ml (95%CI 272.0, 370.8) increase in blood BDNF levels after 6 months of treatment. Growth, sleep quality and mood were unaffected. Conclusions: Behavioural interventions such as environmental enrichment can reduce the functional deficit in Rett syndrome, contributing to the evidence-base for management and further understanding of epigenetic mechanisms. Environmental enrichment will be an important adjunct in the evaluation of new drug therapies that use BDNF pathways because of implications for the strengthening of synapses and improved functioning. Trial registration: ACTRN12615001286538

    Regulation of Kainate Receptor Subunit mRNA by Stress and Corticosteroids in the Rat Hippocampus

    Get PDF
    Kainate receptors are a class of ionotropic glutamate receptors that have a role in the modulation of glutamate release and synaptic plasticity in the hippocampal formation. Previous studies have implicated corticosteroids in the regulation of these receptors and recent clinical work has shown that polymorphisms in kainate receptor subunit genes are associated with susceptibility to major depression and response to anti-depressant treatment. In the present study we sought to examine the effects of chronic stress and corticosteroid treatments upon the expression of the mRNA of kainate receptor subunits GluR5-7 and KA1-2. Our results show that, after 7 days, adrenalectomy results in increased expression of hippocampal KA1, GluR6 and GluR7 mRNAs, an effect which is reversed by treatment with corticosterone in the case of KA1 and GluR7 and by aldosterone treatment in the case of GluR6. 21 days of chronic restraint stress (CRS) elevated the expression of the KA1 subunit, but had no effect on the expression of the other subunits. Similarly, 21 days of treatment with a moderate dose of corticosterone also increased KA1 mRNA in the dentate gyrus, whereas a high corticosterone dose has no effect. Our results suggest an interaction between hippocampal kainate receptor composition and the hypothalamic-pituitary-adrenal (HPA) axis and show a selective chronic stress induced modulation of the KA1 subunit in the dentate gyrus and CA3 that has implications for stress-induced adaptive structural plasticity

    Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling

    Get PDF
    Among neurobiological mechanisms underlying antidepressant properties of ketamine, structural remodeling of prefrontal and hippocampal neurons has been proposed as critical. The suggested mechanism involves downstream activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which trigger mammalian target of rapamycin (mTOR)-dependent structural plasticity via brain-derived neurotrophic factor (BDNF) and protein neo-synthesis. We evaluated whether ketamine elicits similar molecular events in dopaminergic (DA) neurons, known to be affected in mood disorders, using a novel, translational strategy that involved mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. Sixty minutes exposure to ketamine elicited concentration-dependent increases of dendritic arborization and soma size in both mouse and human cultures as measured 72 hours after application. These structural effects were blocked by mTOR complex/signaling inhibitors like rapamycin. Direct evidence of mTOR activation by ketamine was revealed by its induction of p70S6 kinase. All effects of ketamine were abolished by AMPA receptor antagonists and mimicked by the AMPA-positive allosteric modulator CX614. Inhibition of BDNF signaling prevented induction of structural plasticity by ketamine or CX614. Furthermore, the actions of ketamine required functionally intact dopamine D3 receptors (D3R), as its effects were abolished by selective D3R antagonists and absent in D3R knockout preparations. Finally, the ketamine metabolite (2R,6R)-hydroxynorketamine mimicked ketamine effects at sub-micromolar concentrations. These data indicate that ketamine elicits structural plasticity by recruitment of AMPAR, mTOR and BDNF signaling in both mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. These observations are of likely relevance to the influence of ketamine upon mood and its other functional actions in vivo.Molecular Psychiatry advance online publication, 21 November 2017; doi:10.1038/mp.2017.241

    The C:N:P:S stoichiometry of soil organic matter

    Get PDF
    The formation and turnover of soil organic matter (SOM) includes the biogeochemical processing of the macronutrient elements nitrogen (N), phosphorus (P) and sulphur (S), which alters their stoichiometric relationships to carbon (C) and to each other. We sought patterns among soil organic C, N, P and S in data for c. 2000 globally distributed soil samples, covering all soil horizons. For non-peat soils, strong negative correlations (p < 0.001) were found between N:C, P:C and S:C ratios and % organic carbon (OC), showing that SOM of soils with low OC concentrations (high in mineral matter) is rich in N, P and S. The results can be described approximately with a simple mixing model in which nutrient-poor SOM (NPSOM) has N:C, P:C and S:C ratios of 0.039, 0.0011 and 0.0054, while nutrient-rich SOM (NRSOM) has corresponding ratios of 0.12, 0.016 and 0.016, so that P is especially enriched in NRSOM compared to NPSOM. The trends hold across a range of ecosystems, for topsoils, including O horizons, and subsoils, and across different soil classes. The major exception is that tropical soils tend to have low P:C ratios especially at low N:C. We suggest that NRSOM comprises compounds selected by their strong adsorption to mineral matter. The stoichiometric patterns established here offer a new quantitative framework for SOM classification and characterisation, and provide important constraints to dynamic soil and ecosystem models of carbon turnover and nutrient dynamics

    Mifepristone Prevents Stress-Induced Apoptosis in Newborn Neurons and Increases AMPA Receptor Expression in the Dentate Gyrus of C57/BL6 Mice

    Get PDF
    Chronic stress produces sustained elevation of corticosteroid levels, which is why it is considered one of the most potent negative regulators of adult hippocampal neurogenesis (AHN). Several mood disorders are accompanied by elevated glucocorticoid levels and have been linked to alterations in AHN, such as major depression (MD). Nevertheless, the mechanism by which acute stress affects the maturation of neural precursors in the dentate gyrus is poorly understood. We analyzed the survival and differentiation of 1 to 8 week-old cells in the dentate gyrus of female C57/BL6 mice following exposure to an acute stressor (the Porsolt or forced swimming test). Furthermore, we evaluated the effects of the glucocorticoid receptor (GR) antagonist mifepristone on the cell death induced by the Porsolt test. Forced swimming induced selective apoptotic cell death in 1 week-old cells, an effect that was abolished by pretreatment with mifepristone. Independent of its antagonism of GR, mifepristone also induced an increase in the percentage of 1 week-old cells that were AMPA+. We propose that the induction of AMPA receptor expression in immature cells may mediate the neuroprotective effects of mifepristone, in line with the proposed antidepressant effects of AMPA receptor potentiators
    corecore