6 research outputs found

    Ins1 Gene Up-Regulated in a β-Cell Line Derived from Ins2 Knockout Mice

    Get PDF
    The authors have derived a new β-cell line (βIns2−/−lacZ) from Ins2−/− mice that carry the lacZ reporter gene under control of the Ins2 promoter. βIns2−/−lacZ cells stained positively using anti-insulin antibody, expressed β-cell–specific genes encoding the transcription factor PDX-1, glucokinase, and Glut-2, retained glucose-responsiveness for insulin secretion, and expressed the lacZ gene. Analysis of Ins1 expression by reverse transcriptase–polymerase chain reaction (RT-PCR) showed that Ins1 transcripts were significantly raised to compensate for the lack of Ins2 transcripts in βIns2−/−lacZ cells, as compared to those found in βTC1 cells expressing both Ins1/Ins2. Thus, transcriptional up-regulation of the remaining functional insulin gene in Ins2−/− mice could potentially contribute to the β-cell adaptation exhibited by these mutants, in addition to the increase in β-cell mass that we previously reported.We have also shown that lacZ expression, as analyzed by determining β-galactosidase activity, was up-regulated by incubating βIns2−/−lacZ cells with GLP-1 and/or IBMX, 2 known stimulators of insulin gene expression. These cells thus represent a new tool for testing of molecules capable of stimulating Ins2 promoter activit

    Corrective effects of hepatotoxicity by hepatic Dyrk1a gene delivery in mice with intermediate hyperhomocysteinemia

    No full text
    Hyperhomocysteinemia results from hepatic metabolism dysfunction and is characterized by a high plasma homocysteine level, which is also an independent risk factor for cardiovascular disease. Elevated levels of homocysteine in plasma lead to hepatic lesions and abnormal lipid metabolism. Therefore, lowering homocysteine levels might offer therapeutic benefits. Recently, we were able to lower plasma homocysteine levels in mice with moderate hyperhomocysteinemia using an adenoviral construct designed to restrict the expression of DYRK1A, a serine/threonine kinase involved in methionine metabolism (and therefore homocysteine production), to hepatocytes. Here, we aimed to extend our previous findings by analyzing the effect of hepatocyte-specific Dyrk1a gene transfer on intermediate hyperhomocysteinemia and its associated hepatic toxicity and liver dysfunction. Commensurate with decreased plasma homocysteine and alanine aminotransferase levels, targeted hepatic expression of DYRK1A in mice with intermediate hyperhomocysteinemia resulted in elevated plasma paraoxonase-1 and lecithin:cholesterol acyltransferase activities and apolipoprotein A–I levels. It also rescued hepatic apolipoprotein E, J, and D levels. Further, Akt/GSK3/cyclin D1 signaling pathways in the liver of treated mice were altered, which may help prevent homocysteine-induced cell cycle dysfunction. DYRK1A gene therapy could be useful in the treatment of hyperhomocysteinemia in populations, such as end-stage renal disease patients, who are unresponsive to B-complex vitamin therapy

    Corrective effects of hepatotoxicity by hepatic Dyrk1a gene delivery in mice with intermediate hyperhomocysteinemia

    No full text
    Hyperhomocysteinemia results from hepatic metabolism dysfunction and is characterized by a high plasma homocysteine level, which is also an independent risk factor for cardiovascular disease. Elevated levels of homocysteine in plasma lead to hepatic lesions and abnormal lipid metabolism. Therefore, lowering homocysteine levels might offer therapeutic benefits. Recently, we were able to lower plasma homocysteine levels in mice with moderate hyperhomocysteinemia using an adenoviral construct designed to restrict the expression of DYRK1A, a serine/threonine kinase involved in methionine metabolism (and therefore homocysteine production), to hepatocytes. Here, we aimed to extend our previous findings by analyzing the effect of hepatocyte-specific Dyrk1a gene transfer on intermediate hyperhomocysteinemia and its associated hepatic toxicity and liver dysfunction. Commensurate with decreased plasma homocysteine and alanine aminotransferase levels, targeted hepatic expression of DYRK1A in mice with intermediate hyperhomocysteinemia resulted in elevated plasma paraoxonase-1 and lecithin:cholesterol acyltransferase activities and apolipoprotein A-I levels. It also rescued hepatic apolipoprotein E, J, and D levels. Further, Akt/GSK3/cyclin D1 signaling pathways in the liver of treated mice were altered, which may help prevent homocysteine-induced cell cycle dysfunction. DYRK1A gene therapy could be useful in the treatment of hyperhomocysteinemia in populations, such as end-stage renal disease patients, who are unresponsive to B-complex vitamin therapy.status: publishe

    Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species

    No full text
    International audienceImpacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species

    Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study

    No full text
    International audienceBACKGROUND: Patients with severe COVID-19 have emerged as a population at high risk of invasive fungal infections (IFIs). However, to our knowledge, the prevalence of IFIs has not yet been assessed in large populations of mechanically ventilated patients. We aimed to identify the prevalence, risk factors, and mortality associated with IFIs in mechanically ventilated patients with COVID-19 under intensive care. METHODS: We performed a national, multicentre, observational cohort study in 18 French intensive care units (ICUs). We retrospectively and prospectively enrolled adult patients (aged ≥18 years) with RT-PCR-confirmed SARS-CoV-2 infection and requiring mechanical ventilation for acute respiratory distress syndrome, with all demographic and clinical and biological follow-up data anonymised and collected from electronic case report forms. Patients were systematically screened for respiratory fungal microorganisms once or twice a week during the period of mechanical ventilation up to ICU discharge. The primary outcome was the prevalence of IFIs in all eligible participants with a minimum of three microbiological samples screened during ICU admission, with proven or probable (pr/pb) COVID-19-associated pulmonary aspergillosis (CAPA) classified according to the recent ECMM/ISHAM definitions. Secondary outcomes were risk factors of pr/pb CAPA, ICU mortality between the pr/pb CAPA and non-pr/pb CAPA groups, and associations of pr/pb CAPA and related variables with ICU mortality, identified by regression models. The MYCOVID study is registered with ClinicalTrials.gov, NCT04368221. FINDINGS: Between Feb 29 and July 9, 2020, we enrolled 565 mechanically ventilated patients with COVID-19. 509 patients with at least three screening samples were analysed (mean age 59·4 years [SD 12·5], 400 [79%] men). 128 (25%) patients had 138 episodes of pr/pb or possible IFIs. 76 (15%) patients fulfilled the criteria for pr/pb CAPA. According to multivariate analysis, age older than 62 years (odds ratio [OR] 2·34 [95% CI 1·39-3·92], p=0·0013), treatment with dexamethasone and anti-IL-6 (OR 2·71 [1·12-6·56], p=0·027), and long duration of mechanical ventilation (\textgreater14 days; OR 2·16 [1·14-4·09], p=0·019) were independently associated with pr/pb CAPA. 38 (7%) patients had one or more other pr/pb IFIs: 32 (6%) had candidaemia, six (1%) had invasive mucormycosis, and one (\textless1%) had invasive fusariosis. Multivariate analysis of associations with death, adjusted for candidaemia, for the 509 patients identified three significant factors: age older than 62 years (hazard ratio [HR] 1·71 [95% CI 1·26-2·32], p=0·0005), solid organ transplantation (HR 2·46 [1·53-3·95], p=0·0002), and pr/pb CAPA (HR 1·45 [95% CI 1·03-2·03], p=0·033). At time of ICU discharge, survival curves showed that overall ICU mortality was significantly higher in patients with pr/pb CAPA than in those without, at 61·8% (95% CI 50·0-72·8) versus 32·1% (27·7-36·7; p\textless0·0001). INTERPRETATION: This study shows the high prevalence of invasive pulmonary aspergillosis and candidaemia and high mortality associated with pr/pb CAPA in mechanically ventilated patients with COVID-19. These findings highlight the need for active surveillance of fungal pathogens in patients with severe COVID-19. FUNDING: Pfizer
    corecore