397 research outputs found

    Diel variation in vertical distribution of an offshore ichthyoplankton community off the Oregon coast

    Get PDF
    We examined the diel ver-tical distribution, concentration, and community structure of ichthyoplank-ton from a single station 69 km off the central Oregon coast in the northeast Pacific Ocean. The 74 depth-stratified samples yielded 1571 fish larvae from 20 taxa, representing 11 families, and 128 fish eggs from 11 taxa within nine families. Dominant larval taxa were Sebastes spp. (rockfishes), Stenobra-chius leucopsarus (northern lampfish), Tarletonbeania crenularis (blue lan-ternfish), and Lyopsetta exilis (slender sole), and the dominant egg taxa were Sardinops sagax (Pacific sardine), Icichthys lockingtoni (medusafish), and Chauliodus macouni (Pacific viperfish). Larval concentrations generally increased from the surface to 50 m, then decreased with depth. Larval concentrations were higher at night than during the day, and there was evidence of larval diel vertical migration. Depth stratum was the most important factor explaining variability in larval and egg concentrations

    Budding and vesiculation induced by conical membrane inclusions

    Get PDF
    Conical inclusions in a lipid bilayer generate an overall spontaneous curvature of the membrane that depends on concentration and geometry of the inclusions. Examples are integral and attached membrane proteins, viruses, and lipid domains. We propose an analytical model to study budding and vesiculation of the lipid bilayer membrane, which is based on the membrane bending energy and the translational entropy of the inclusions. If the inclusions are placed on a membrane with similar curvature radius, their repulsive membrane-mediated interaction is screened. Therefore, for high inclusion density the inclusions aggregate, induce bud formation, and finally vesiculation. Already with the bending energy alone our model allows the prediction of bud radii. However, in case the inclusions induce a single large vesicle to split into two smaller vesicles, bending energy alone predicts that the smaller vesicles have different sizes whereas the translational entropy favors the formation of equal-sized vesicles. Our results agree well with those of recent computer simulations.Comment: 11 pages, 12 figure

    Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts

    Get PDF
    Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn–1(BR4)n]− (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1–6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81–585, DTCCSN2 = 130–704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin–1MnPh2n]− and [MnPhn+1]− (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers

    MC4.3 - Optically Coupled Mode-Locked Laser Array for Spectroscopy in InP Generic Integration

    Get PDF
    We propose a two-element mode-locked laser array operating at 1.56 µm. Optical pulses with 14.5-ps width, spectral bandwidth exceeding 7 nm, and RF line width of 260 kHz at 12.448 GHz are experimentally reported

    External optical self-injection stabilization of an InP generic foundry platform based passively mode-locked ring laser

    Get PDF
    Timing stabilization of a photonic integrated circuit extended cavity passively mode-locked semiconductor ring laser with four gain sections and two saturable absorbers in a symmetric ring geometry by optical self-injection is presented. The laser has been fabricated using an InP generic integration technology platform. Repetition rate tuning up to 5.5MHz and a timing jitter reduction by optical self-injection from 99 fs (solitary laser operation) to 20 fs is demonstrated. The experimental results are in excellent agreement with results obtained by a stochastic time domain model which yet had been solely applied to edge-emitting straight waveguide semiconductor lasers

    Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context

    Get PDF
    Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    Design of magnetic materials: Co2_2Cr1−x_{1-x}Fex_{x}Al

    Full text link
    Doped Heusler compounds Co2_2Cr1−x_{1-x}Fex_{x}Al with varying Cr to Fe ratio xx were investigated experimentally and theoretically. The electronic structure of the ordered, doped Heusler compound Co2_2Cr1−x_{1-x}Fex_{x}Al (x=n/4,n=0,1,2,3,4)x=n/4, n=0,1,2,3,4) was calculated using different types of band structure calculations. The ordered compounds turned out to be ferromagnetic with small Al magnetic moment being aligned anti-parallel to the 3d transition metal moments. All compounds show a gap around the Fermi-energy in the minority bands. The pure compounds exhibit an indirect minority gap, whereas the ordered, doped compounds exhibit a direct gap. Magnetic circular dichroism (MCD) in X-ray absorption spectra was measured at the L2,3L_{2,3} edges of Co, Fe, and Cr of the pure compounds and the x=0.4x=0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. The experimentally observed reduction of the magnetic moment of Cr can be explained by Co-Cr site-disorder. The presence of the gap in the minority bands of Co2_2CrAl can be attributed to the occurrence of pure Co2_2 and mixed CrAl (001)-planes in the L21L2_1 structure. It is retained in structures with different order of the CrAl planes but vanishes in the XX-structure with alternating CoCr and CoAl planes.Comment: corrected author lis

    Electronic structure and spectroscopy of the quaternary Heusler alloy Co2_2Cr1−x_{1-x}Fex_{x}Al

    Full text link
    Quaternary Heusler alloys Co2_2Cr1−x_{1-x}Fex_{x}Al with varying Cr to Fe ratio xx were investigated experimentally and theoretically. The electronic structure and spectroscopic properties were calculated using the full relativistic Korringa-Kohn-Rostocker method with coherent potential approximation to account for the random distribution of Cr and Fe atoms as well as random disorder. Magnetic effects are included by the use of spin dependent potentials in the local spin density approximation. Magnetic circular dichroism in X-ray absorption was measured at the L2,3L_{2,3} edges of Co, Fe, and Cr of the pure compounds and the x=0.4x=0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. Resonant (560eV - 800eV) soft X-ray as well as high resolution - high energy (≥3.5\geq 3.5keV) hard X-ray photo emission was used to probe the density of the occupied states in Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al.Comment: J.Phys.D_Appl.Phys. accepte
    • …
    corecore