34 research outputs found

    Early dissociation of numbers and letters in the human brain

    Get PDF
    Published online 7 May 2020Numbers and letters are culturally created symbols which are learned through repeated training. This experience leads to a functional specialization of the perceptual system of our brain. Recent evidence suggests a neural dissociation between these two symbols. While previous literature has shown that letters elicit a left lateralized neural response, new studies suggest that numbers elicit preferentially a bilateral or right lateralized response. However, the time course of the neural patterns that characterize this dissociation is still underspecified. In the present study, we investigated with magnetoencephalography (MEG) the spatio-temporal dynamics of the neural response generated by numbers, letters and perceptually matched false fonts presented visually. Twenty-five healthy adults were recorded while participants performed a dot detection task. By including two experiments, we were able to study the effects of single characters as well as those of strings of characters. The signal analysis was focused on the event related fields (ERF) of the MEG signal in the sensors and in the source space. The main results of our study showed an early (<200 msec) preferential dissociation between single numbers and single letters on occipito-temporal sensors. When comparing strings of numbers and pseudowords, they differed also over prefrontal regions of the brain. These data offer a new example of acquired category-specific responses in the human brain.The research was partially supported by Basque Government (BERC 2018-2021 program), BCBL Severo Ochoa excellence accreditation SEV-2015-0490, and Grant RTI2018-093547-B-I00 from the Spanish Ministerio de Ciencia, Innovaci on y Universidades and the Agencia Estatal de Investigaci on

    Signal-to-noise ratio of the MEG signal after preprocessing

    Get PDF
    Background Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. New method The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. Results Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5–10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. Comparison with existing methods No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. Conclusions The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable

    Cognitive reserve is associated with the functional organization of brain networks in healthy aging: a MEG study

    Full text link
    The proportion of elderly people in the population has increased rapidly in the last century and consequently "healthy aging" is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve. 21 subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of cognitive reserve; one group comprised subjects with high cognitive reserve (9 members) and the other contained those with low cognitive reserve (12 members). To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG) while they performed a memory task (modified version of the SternbergÂżs Task). We then applied two algorithms (Phase Locking Value & Phase-Lag Index) to study the dynamics of functional connectivity. In response to the same task, the subjects with lower cognitive reserve presented higher functional connectivity than those with higher cognitive reserve. These results may indicate that participants with low cognitive reserve needed a greater 'effort' than those with high cognitive reserve to achieve the same level of cognitive performance. Therefore, we conclude that cognitive reserve contributes to the modulation of the functional connectivity patterns of the aging brain

    Synchronization during an internally directed cognitive state in healthy aging and mild cognitive impairment: a MEG study

    Get PDF
    Mild Cognitive Impairment (MCI) is a stage between healthy aging and dementia. Functional connectivity is widely used to study the brain activity during resting state or cognitive tasks. We aimed to determine the functional connectivity changes required to deal with an Internally Directed Cognitive State (IDICS) in healthy aging and MCI. This task differs from the most commonly employed in Magnetoencephalograpy (MEG)/ Electroencephalography (EEG), since inhibition from external stimuli is needed, and it allows the study of this control mechanism in healthy and pathological aging. To this end, MEG signals were acquired from 32 healthy individuals and 38 MCI patients, both in resting state and while performing a subtraction task of two levels of difficulty. Phase Locking Value (PLV) was calculated for five frequency bands: delta, theta, alpha, beta and gamma. Synchronization patterns changed in both groups while performing the task. MCI patients presented higher connectivity changes than those in the control group, and this was related to a lower cognitive performance. In particular, in MCIs a hypersynchronization in delta, theta, beta and gamma bands was found, which reveals an abnormal functioning in this group. Contrary to controls, MCIs presented a lack of synchronization in the alpha band which may denote an inhibition deficit. Additionally, the magnitude of connectivity changes rose with the task difficulty in controls but not in MCIs, in line with the CRUNCH model (Compensation-Related Utilization of Neural Circuits Hypothesis)

    Alpha-band hypersynchronization in progressive mild cognitive impairment. A magnetoencephalography study

    Get PDF
    People with mild cognitive impairment (MCI) show a high risk to develop Alzheimer?s disease (AD; Petersen et al., 2001). Nonetheless, there is a lack of studies about how functional connectivity patterns may distinguish between progressive (pMCI) and stable (sMCI) MCI patients. To examine whether there were differences in functional connectivity between groups, MEG eyes-closed recordings from 30 sMCI and 19 pMCI subjects were compared. The average conversion time of pMCI was 1 year, so they were considered as fast converters. To this end, functional connectivity in different frequency bands was assessed with phase locking value in source space. Then the significant differences between both groups were correlated with neuropsychological scores and entorhinal, parahippocampal, and hippocampal volumes. Both groups did not differ in age, gender, or educational level. pMCI patients obtained lower scores in episodic and semantic memory and also in executive functioning. At the structural level, there were no differences in hippocampal volume, although some were found in left entorhinal volume between both groups. Additionally, pMCI patients exhibit a higher synchronization in the alpha band between the right anterior cingulate and temporo-occipital regions than sMCI subjects. This hypersynchronization was inversely correlated with cognitive performance, both hippocampal volumes, and left entorhinal volume. The increase in phase synchro- nization between the right anterior cingulate and temporo-occipital areas may be predictive of conversion from MCI to AD

    MEG spectral analysis in subtypes of mild cognitive impairment

    Get PDF
    Mild cognitive impairment (MCI) has been described as an intermediate stage between normal aging and dementia. Previous studies characterized the alterations of brain oscillatory activity at this stage, but little is known about the differences between single and multidomain amnestic MCI patients. In order to study the patterns of oscillatory magnetic activity in amnestic MCI subtypes, a total of 105 subjects underwent an eyes-closed resting-state magnetoencephalographic recording: 36 healthy controls, 33 amnestic single domain MCIs (a-sd-MCI), and 36 amnestic multidomain MCIs (a-md-MCI). Relative power values were calculated and compared among groups. Subsequently, relative power values were correlated with neuropsychological tests scores and hippocampal volumes. Both MCI groups showed an increase in relative power in lower frequency bands (delta and theta frequency ranges) and a decrease in power values in higher frequency bands (alpha and beta frequency ranges), as compared with the control group. More importantly, clear differences emerged from the comparison between the two amnestic MCI subtypes. The a-md-MCI group showed a significant power increase within delta and theta ranges and reduced relative power within alpha and beta ranges. Such pattern correlated with the neuropsychological performance, indicating that the a-md-MCI subtype is associated not only with a "slowing" of the spectrum but also with a poorer cognitive status. These results suggest that a-md-MCI patients are characterized by a brain activity profile that is closer to that observed in Alzheimer disease. Therefore, it might be hypothesized that the likelihood of conversion to dementia would be higher within this subtype

    Early dysfunction of functional connectivity in healthy elderly with subjective memory complaints

    Get PDF
    It is still an open question whether subjective memory complaints (SMC) can actually be considered to be clinically relevant predictors for the development of an objective memory impairment and even dementia. There is growing evidence that suggests that SMC are associated with an increased risk of dementia and with the presence of biological correlates of early Alzheimer's disease. In this paper, in order to shed some light on this issue, we try to discern whether subjects with SMC showed a different profile of functional connectivity compared with subjects with mild cognitive impairment (MCI) and healthy elderly subjects. In the present study, we compare the degree of synchronization of brain signals recorded with magnetoencephalography between three groups of subjects (56 in total): 19 with MCI, 12 with SMC and 25 healthy controls during a memory task. Synchronization likelihood, an index based on the theory of nonlinear dynamical systems, was used to measure functional connectivity. Briefly, results show that subjects with SMC have a very similar pattern of connectivity to control group, but on average, they present a lower synchronization value. These results could indicate that SMC are representing an initial stage with a hypo-synchronization (in comparison with the control group) where the brain system is still not compensating for the failing memory networks, but behaving as controls when compared with the MCI subjects

    Cerebrospinal Fluid 7-Ketocholesterol Level is Associated with Amyloid-ÎČ42 and White Matter Microstructure in Cognitively Healthy Adults

    Get PDF
    Background:Abnormal cholesterol metabolism changes the neuronal membrane and may promote amyloidogenesis. Oxysterols in cerebrospinal fluid (CSF) are related to Alzheimer’s disease (AD) biomarkers in mild cognitive impairment and dementia. Cholesterol turnover is important for axonal and white matter (WM) microstructure maintenance. Objective:We aim to demonstrate that the association of oxysterols, AD biomarkers, and WM microstructure occurs early in asymptomatic individuals. Methods:We studied the association of inter-individual variability of CSF 24-hydroxycholesterol (24-OHC), 27-hydroxycholesterol (27-OHC), 7-ketocholesterol (7-KC), 7ÎČ-hydroxycholesterol (7ÎČ-OHC), amyloid-ÎČ42 (AÎČ42), total-tau (t-tau), phosphorylated-tau (p-tau), neurofilament (NfL), and WM microstructure using diffusion tensor imaging, generalized linear models and moderation/mediation analyses in 153 healthy adults. Results:Higher 7-KC levels were related to lower AÎČ42, indicative of greater AD pathology (p = 0.041) . Higher 7-KC levels were related to lower fractional anisotropy (FA) and higher mean (MD), axial (AxD), and radial (RD) diffusivity. 7-KC modulated the association between AxD and NfL in the corpus callosum splenium (B = 39.39, p = 0.017), genu (B = 68.64, p = 0.000), and fornix (B = 10.97, p = 0.000). Lower AÎČ42 levels were associated to lower FA and higher MD, AxD, and RD in the fornix, corpus callosum, inferior longitudinal fasciculus, and hippocampus. The association between AxD and AÎČ42 was moderated by 7K-C (p = 0.048). Conclusion:This study adds clinical evidence to support the role of 7K-C on axonal integrity and the involvement of cholesterol metabolism in the AÎČ42 generation process

    MEG networks organization is related to white matter integrity

    Get PDF
    Many studies have assessed the characterization of anatomical or functional connectivity in mild cognitive impairment (MCI), however it is still unknown how they are related in the course of the pathology. Here we integrate the analysis of magnetoencephalographic (MEG) data with white matter (WM) integrity quantification from diffusion weighted imaging (DWI), to asses whether the damage in the WM tracts disrupt the organization of the functional networks

    Mild cognitive impairment subtypes: An MEG study

    Get PDF
    Previous studies of the dementia continuum have characterized the early disruption of the brain oscillatory activity at the stage of Mild cognitive impairment (MCI). Reduction in power in posterior regions in the alpha band has been one of the landmarks of the Alzheimer Disease accompanied by the anteriorization of the theta band power. However, little is known about the neurophysiological differences between single and multidomain MCI patients.Our goal is to study the differences in oscillatory magnetic activity between amnestic single and multidomain MCI. This will allow us to test whether the effect of the impairment in a single cognitive domain or in a more widespread functional impairment can be reflected in specific neurophysiological profiles
    corecore