17 research outputs found

    Lenalidomide treatment and prognostic markers in relapsed or refractory chronic lymphocytic leukemia: data from the prospective, multicenter phase-II CLL-009 trial

    Get PDF
    Efficacy of lenalidomide was investigated in 103 patients with relapsed/refractory chronic lymphocytic leukemia (CLL) treated on the prospective, multicenter randomized phase-II CLL-009 trial. Interphase cytogenetic and mutational analyses identified TP53 mutations, unmutated IGHV, or del(17p) in 36/96 (37.5%), 68/88 (77.3%) or 22/92 (23.9%) patients. The overall response rate (ORR) was 40.4% (42/104). ORRs were similar irrespective of TP53 mutation (36.1% (13/36) vs 43.3% (26/60) for patients with vs without mutation) or IGHV mutation status (45.0% (9/20) vs 39.1% (27/68)); however, patients with del(17p) had lower ORRs than those without del(17p) (21.7% (5/22) vs 47.1% (33/70); P=0.049). No significant differences in progression-free survival and overall survival (OS) were observed when comparing subgroups defined by the presence or absence of high-risk genetic characteristics. In multivariate analyses, only multiple prior therapies (greater than or equal to3 lines) significantly impacted outcomes (median OS: 21.2 months vs not reached; P=0.019). This analysis indicates that lenalidomide is active in patients with relapsed/refractory CLL with unfavorable genetic profiles, including TP53 inactivation or unmutated IGHV. (ClinicalTrials.gov identifier: NCT00963105)

    A role for HVEM, but not lymphotoxin-beta receptor, in LIGHT-induced tumor cell death and chemokine production

    No full text
    The TNF member LIGHT also known as TL4 or TNFSF14) can play a major role in cancer control via its two receptors; it induces tumor cell death through lymphotoxin-P receptor (LT-beta R) and ligation to the herpes virus entry mediator (HVEM) amplifies the immune response. By studying the effect of LIGHT in the transcriptional profile of a lymphoid malignancy, we found that HVEM, but not LT-beta R, stimulation induces a significant increase in the expression of chemokine genes such as IL-8, and an unexpected upregulation of apoptotic genes. This had functional consequences, since LIGHT, or HVEM mAb, thus far known to costimulate T- and B-cell activation, induced chronic lymphocytic leukemia cell death. Many of the mediators involved were identified here, with an apoptotic pathway as demonstrated by caspases activation, decrease in mitochondrial membrane potential, upregulation of the pro-apoptotic protein Bax, but also a role of TRAIL. Moreover, HVEM induced endogenous TNF-alpha production and TNF-alpha enhanced HVEM-mediated cell death. HVEM function was mainly dependent on LIGHT, since other ligands like HSV-glycoprotein D and B and T lymphocyte attenuator were essentially ineffective. in conclusion, we describe a novel, as yet unknown killing effect of LIGHT through HVEM on a lymphoid malignancy, and combined with induction of chemokine release this may represent an additional tool to boost cancer immunotherap
    corecore