232 research outputs found

    First-principles study of the ferroelectric Aurivillius phase Bi2WO6

    Full text link
    In order to better understand the reconstructive ferroelectric-paraelectric transition of Bi2WO6, which is unusual within the Aurivillius family of compounds, we performed first principles calculations of the dielectric and dynamical properties on two possible high-temperature paraelectic structures: the monoclinic phase of A2/m symmetry observed experimentally and the tetragonal phase of I4/mmm symmetry, common to most Aurivillius phase components. Both paraelectric structures exhibits various unstable modes, which after their condensation bring the system toward more stable structures of lower symmetry. The calculations confirms that, starting from the paraelectric A2/m phase at high temperature, the system must undergo a reconstructive transition to reach the P2_1ab ferroelectric ground state.Comment: added Appendix and two table

    Electronic Structure and Valence Band Spectra of Bi4Ti3O12

    Full text link
    The x-ray photoelectron valence band spectrum and x-ray emission valence-band spectra (Ti K _beta_5, Ti L_alpha, O K_alpha) of Bi4Ti3O12 are presented (analyzed in the common energy scale) and interpreted on the basis of a band-structure calculation for an idealized I4/mmm structure of this material.Comment: 6 pages + 7 PostScript figures, RevTex3.0, to be published in Phys.Rev.B52 (Oct.95). Figures also available via anonymous ftp at ftp://ftp.physik.uni-osnabrueck.de/pub/apostnik/BiTiO

    First-Principles Calculation of Born Effective Charges and Spontaneous Polarization of Ferroelectric Bismuth Titanate

    Full text link
    In this study, we present the results of our first-principles calculations of the band structure, density of states and the Born effective charge tensors for the ferroelectric (ground state B1a1) and paraelectric (I4/mmm) phases of bismuth titanate. The calculations are done using the generalized gradient approximation (GGA) as well as the local density approximation (LDA) of the density functional theory. In contrast to the literature, our calculations on B1a1 structure using GGA and LDA yield smaller indirect band gaps as compared to the direct band gaps, in agreement with the experimental data. The density of states shows considerable hybridization among Ti 3d, Bi 6p and O 2p states indicating covalent nature of the bonds leading to the ferroelectric instability. The Born effective charge tensors of the constituent ions for the ground state (B1a1) and paraelectric (I4/mmm) structures were calculated using the Berry phase method. This is followed by the calculation of the spontaneous polarization for the ferroelectric B1a1 phase using the Born effective charge tensors of the individual ions. The calculated value for the spontaneous polarization of ferroelectric bismuth titanate using different Born effective charges was found to be in the range of 55+/-13 μ\muC/cm2 in comparison to the reported experimental value of (50+/-10 μ\muC/cm2) for single crystals. The origin of ferroelectricity is attributed to the relatively large displacements of those oxygen ions in the TiO6 octahedra that lie along the a-axis of the bismuth titanate crystal.Comment: 36 pages, 5 figure

    High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability

    Get PDF
    We screen a large chemical space of perovskite alloys for systems with optimal properties to accommodate a morphotropic phase boundary (MPB) in their composition-temperature phase diagram, a crucial feature for high piezoelectric performance. We start from alloy end points previously identified in a high-throughput computational search. An interpolation scheme is used to estimate the relative energies between different perovskite distortions for alloy compositions with a minimum of computational effort. Suggested alloys are further screened for thermodynamic stability. The screening identifies alloy systems already known to host an MPB and suggests a few others that may be promising candidates for future experiments. Our method of investigation may be extended to other perovskite systems, e.g., (oxy-)nitrides, and provides a useful methodology for any application of high-throughput screening of isovalent alloy systems

    Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors

    Full text link
    Layered d-metal pnictide oxides are a unique class of compounds which consists of characteristic d-metal pnictide layers and metal oxide layers. More than 100 of these layered compounds, including the recently discovered Fe-based superconducting pnictide oxides, can be classified into 9 structure types. These structure types and the chemical and physical properties of the characteristic d-metal pnictide layers and metal oxide layers of the layered d-metal pnictide oxides are reviewed and discussed. Furthermore, possible approaches to design new superconductors based on these layered d-metal pnictide oxides are proposed.Comment: 29 pages including 6 tables and 2 figure

    Room-temperature multiferroic behavior in layer-structured Aurivillius phase ceramics

    Get PDF
    Multiferroics that simultaneously exhibit ferroelectricity and ferromagnetism have recently attracted great attention due to their potential application in next generation electronic devices. However, only a few single-phase multiferroic materials exhibit ferroelectric and ferromagnetic orders at room temperature. Recently, some bismuth layer-structured Aurivillius compounds were reported as multiferroics at room temperature, but the origin of their magnetic property is still under debate because the net magnetization may originate from the presence of secondary phases that are not easily detected by laboratory XRD diffractometers. Here, textured Aurivillius phase Bi5.25La0.75FeCoTi3O18 ceramics were prepared by Spark Plasma Sintering. The ferromagnetic character of the ceramics was indicated by the magnetic field-induced reversible intensity changes of a certain set of crystalline planes belonging to the Aurivillius phase, as measured by in situ neutron diffraction under the applied magnetic field. The first principles calculations indicate that the ferromagnetism originates from double exchange interactions Fe3þ–O–Fe3þ, Co3þ–O–Co3þ, and Fe3þ–O–Co3þ in the ferro-toroidal main phase. The magnetic-controlled ferroelectric domain switching was observed by piezoelectric force microscopy at room temperature. The prepared Aurivillius phase ceramics, with Co/Fe contributing to magnetization and polarization at the same time, can be considered an intrinsic room-temperature multiferroic

    Electronic structure and ferroelectricity in SrBi2Ta2O9

    Full text link
    The electronic structure of SrBi2Ta2O9 is investigated from first-principles, within the local density approximation, using the full-potential linearized augmented plane wave (LAPW) method. The results show that, besides the large Ta(5d)-O(2p) hybridization which is a common feature of the ferroelectric perovskites, there is an important hybridization between bismuth and oxygen states. The underlying static potential for the ferroelectric distortion and the primary source for ferroelectricity is investigated by a lattice-dynamics study using the Frozen Phonon approach.Comment: 17 pages, 7 figures. Phys. Rev. B, in pres

    High Temperature Emissivity, Reflectivity, and X-ray absorption of BiFeO3

    Get PDF
    We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and X-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exponent {\beta}=0.25 as for a tricritical point. At about 200 K below TN~640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ~700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC~1090 K. Temperature dependent X-ray absorption near edge structure (XANES) at the Fe K-edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO w\"ustite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.Comment: Accepted for publicatio
    • …
    corecore