482 research outputs found

    Scalable Production and Purification of Adeno-Associated Viral Vectors (AAV).

    Get PDF
    Here we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium in orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI) mediated transfection of a 2-plasmid system and is specified for production in milliliter to liter scales. After PEI and plasmid DNA (pDNA) complex formation the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 3-day batch process, cell cultures are further processed using different methods for lysis and recovery. Methods for the purification of viral particles are described, including iodixanol gradient purification, immunoaffinity chromatography, and ultrafiltration, as well as quantitative PCR to quantify vector titer

    AAV-mediated photoreceptor transduction of the pig cone-enriched retina

    Get PDF
    Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition, although AAV-mediated RPE transduction appears efficient, independently of the serotype used and species treated, AAV-mediated photoreceptor gene transfer has not been systematically investigated thus so far in large animal models, which also may allow identifying relevant species-specific differences in AAV-mediated retinal transduction. In the present study, we used the porcine retina, which has a high cone/rod ratio. This feature allows to properly evaluate both cone and rod photoreceptors transduction and compare the transduction characteristics of AAV2/5 and 2/8, the two most efficient AAV vector serotypes for photoreceptor targeting. Here we show that AAV2/5 and 2/8 transduces both RPE and photoreceptors. AAV2/8 infects and transduces photoreceptor more efficiently than AAV2/5, similarly to what we have observed in the murine retina. The use of the photoreceptor-specific rhodopsin promoter restricts transgene expression to porcine rods and cones, and results in photoreceptor transduction levels similar to those obtained with the ubiquitous promoters tested. Finally, immunological, toxicological and biodistribution studies support the safety of AAV subretinal administration to the large porcine retina. The data presented here on AAV-mediated transduction of the cone-enriched porcine retina may affect the development of gene-based therapies for rare and common severe photoreceptor diseases

    MicroRNA-Restricted Transgene Expression in the Retina

    Get PDF
    Background: Gene transfer using adeno-associated viral (AAV) vectors has been successfully applied in the retina for the treatment of inherited retinal dystrophies. Recently, microRNAs have been exploited to fine-tune transgene expression improving therapeutic outcomes. Here we evaluated the ability of retinal-expressed microRNAs to restrict AAV-mediated transgene expression to specific retinal cell types that represent the main targets of common inherited blinding conditions. Methodology/Principal Findings: To this end, we generated AAV2/5 vectors expressing EGFP and containing four tandem copies of miR-124 or miR-204 complementary sequences in the 39UTR of the transgene expression cassette. These vectors were administered subretinally to adult C57BL/6 mice and Large White pigs. Our results demonstrate that miR-124 and miR-204 target sequences can efficiently restrict AAV2/5-mediated transgene expression to retinal pigment epithelium and photoreceptors, respectively, in mice and pigs. Interestingly, transgene restriction was observed at low vector doses relevant to therapy. Conclusions: We conclude that microRNA-mediated regulation of transgene expression can be applied in the retina to either restrict to a specific cell type the robust expression obtained using ubiquitous promoters or to provide an additiona

    Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biventricular (Biv) pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP) assessment by radial artery tonometry in guiding Biv pacemaker optimization.</p> <p>Methods</p> <p>Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV) ejection fraction (EF) 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI), ejection time (ET), myocardial performance index (MPI), radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated.</p> <p>Results</p> <p>Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p < 0.001), LV VTI (15.9 ± 4.8 cm to 18.4 ± 5.1 cm, p < 0.001) and MPI (0.57 ± 0.2 to 0.45 ± 0.13, p < 0.001) and in PEP (246.7 ± 36.1 ms to 234.7 ± 35.5 ms, p = 0.003), PEP/ET (0.88 ± 0.21 to 0.79 ± 0.17, p < 0.001), and PEP/VTI (17.3 ± 7 to 13.78 ± 4.7, p < 0.001). The correlation between comprehensive echo Doppler and radial artery tonometry-PEP guided optimal atrioventricular delay (AVD) and optimal interventricular delay (VVD) was 0.75 (p < 0.001) and 0.69 (p < 0.001) respectively. In 29 patients with follow up assessment, New York Heart Association (NYHA) class reduced from 2.5 ± 0.8 to 2.0 ± 0.9 (p = 0.004) at 1.8 ± 1.4 months.</p> <p>Conclusion</p> <p>An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.</p

    The “Missing” Link Between Acute Hemodynamic Effect and Clinical Response

    Get PDF
    The hemodynamic, mechanical and electrical effects of cardiac resynchronization therapy (CRT) occur immediate and are lasting as long as CRT is delivered. Therefore, it is reasonable to assume that acute hemodynamic effects should predict long-term outcome. However, in the literature there is more evidence against than in favour of this idea. This raises the question of what factor(s) do relate to the benefit of CRT. There is increasing evidence that dyssynchrony, presumably through the resultant abnormal local mechanical behaviour, induces extensive remodelling, comprising structure, as well as electrophysiological and contractile processes. Resynchronization has been shown to reverse these processes, even in cases of limited hemodynamic improvement. These data may indicate the need for a paradigm shift in order to achieve maximal long-term CRT response

    An Improved PSO Algorithm for Generating Protective SNP Barcodes in Breast Cancer

    Get PDF
    BACKGROUND: Possible single nucleotide polymorphism (SNP) interactions in breast cancer are usually not investigated in genome-wide association studies. Previously, we proposed a particle swarm optimization (PSO) method to compute these kinds of SNP interactions. However, this PSO does not guarantee to find the best result in every implement, especially when high-dimensional data is investigated for SNP-SNP interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we propose IPSO algorithm to improve the reliability of PSO for the identification of the best protective SNP barcodes (SNP combinations and genotypes with maximum difference between cases and controls) associated with breast cancer. SNP barcodes containing different numbers of SNPs were computed. The top five SNP barcode results are retained for computing the next SNP barcode with a one-SNP-increase for each processing step. Based on the simulated data for 23 SNPs of six steroid hormone metabolisms and signalling-related genes, the performance of our proposed IPSO algorithm is evaluated. Among 23 SNPs, 13 SNPs displayed significant odds ratio (OR) values (1.268 to 0.848; p<0.05) for breast cancer. Based on IPSO algorithm, the jointed effect in terms of SNP barcodes with two to seven SNPs show significantly decreasing OR values (0.84 to 0.57; p<0.05 to 0.001). Using PSO algorithm, two to four SNPs show significantly decreasing OR values (0.84 to 0.77; p<0.05 to 0.001). Based on the results of 20 simulations, medians of the maximum differences for each SNP barcode generated by IPSO are higher than by PSO. The interquartile ranges of the boxplot, as well as the upper and lower hinges for each n-SNP barcode (n = 3∌10) are more narrow in IPSO than in PSO, suggesting that IPSO is highly reliable for SNP barcode identification. CONCLUSIONS/SIGNIFICANCE: Overall, the proposed IPSO algorithm is robust to provide exact identification of the best protective SNP barcodes for breast cancer

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children

    Cardiac resynchronization therapy guided by cardiovascular magnetic resonance

    Get PDF
    Cardiac resynchronization therapy (CRT) is an established treatment for patients with symptomatic heart failure, severely impaired left ventricular (LV) systolic dysfunction and a wide (> 120 ms) complex. As with any other treatment, the response to CRT is variable. The degree of pre-implant mechanical dyssynchrony, scar burden and scar localization to the vicinity of the LV pacing stimulus are known to influence response and outcome. In addition to its recognized role in the assessment of LV structure and function as well as myocardial scar, cardiovascular magnetic resonance (CMR) can be used to quantify global and regional LV dyssynchrony. This review focuses on the role of CMR in the assessment of patients undergoing CRT, with emphasis on risk stratification and LV lead deployment

    Worsening of Cardiomyopathy Using Deflazacort in an Animal Model Rescued by Gene Therapy

    Get PDF
    We have previously demonstrated that gene therapy can rescue the phenotype and extend lifespan in the delta-sarcoglycan deficient cardiomyopathic hamster. In patients with similar genetic defects, steroids have been largely used to slow down disease progression. Aim of our study was to evaluate the combined effects of steroid treatment and gene therapy on cardiac function. We injected the human delta-sarcoglycan cDNA by adeno-associated virus (AAV) 2/8 by a single intraperitoneal injection into BIO14.6 Syrian hamsters at ten days of age to rescue the phenotype. We then treated the hamsters with deflazacort. Treatment was administered to half of the hamsters that had received the AAV and the other hamsters without AAV, as well as to normal hamsters. Both horizontal and vertical activities were greatly enhanced by deflazacort in all groups. As in previous experiments, the AAV treatment alone was able to preserve the ejection fraction (70±7% EF). However, the EF value declined (52±14%) with a combination of AAV and deflazacort. This was similar with all the other groups of affected animals. We confirm that gene therapy improves cardiac function in the BIO14.6 hamsters. Our results suggest that deflazacort is ineffective and may also have a negative impact on the cardiomyopathy rescue, possibly by boosting motor activity. This is unexpected and may have significance in terms of the lifestyle recommendations for patients
    • 

    corecore