116 research outputs found

    Electrical conductivity and thermal dilepton rate from quenched lattice QCD

    Get PDF
    We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at T≃1.45TcT\simeq 1.45 T_c using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 TcT_c will be presented.Comment: 4 pages, 6 eps figures, to appear in the proceedings of Quark Matter 2011, 23-28 May 2011, Annecy, Franc

    On the temperature dependence of the electrical conductivity in hot quenched lattice QCD

    Full text link
    Extending our recent work, we report on a calculation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD in the temperature range 1.16Tc<T<2.98Tc. After performing a systematic analysis of the in fluence of cut-off effects on light quark meson correlators using clover improved Wilson fermions, we discuss resulting constraints on the electrical conductivity in a quark gluon plasma.Comment: 7 pages, 3 figures, contribution to the proceedings of the "International School of Nuclear Physics 33rd Course 'From Quarks and Gluons to Hadrons and Nuclei' Erice-Sicily, September 16-24, 2011

    Phenomenological study of charm photoproduction at HERA

    Get PDF
    We present predictions for single inclusive distributions of charmed mesons, relevant to the HERA experiments. Our results are based upon a computation that correctly incorporates mass effects up to the next-to-leading order level, and the resummation of transverse momentum logarithms up to next-to-leading-logarithmic level. We apply the same acceptance cuts as the H1 and Zeus experiments, and compare our results to their data. We perform a study of the sensitivity of our predictions on the charm mass, \LambdaQCD, factorization scale, renormalization scale, and fragmentation parameters.Comment: 15 pages Latex; 25 figures include

    Next-to-leading order QCD corrections to A_TT for prompt photon production

    Full text link
    We present a next-to-leading order QCD calculation of the cross section for isolated large-p_T prompt photon production in collisions of transversely polarized protons. We devise a simple method of dealing with the phase space integrals in dimensional regularization in the presence of the cos(2 phi) azimuthal-angular dependence occurring for transverse polarization. Our results allow to calculate the double-spin asymmetry A_TT for this process at next-to-leading order accuracy, which may be used at BNL-RHIC to measure the transversity parton distributions of the proton.Comment: 19 pages, LaTeX, 2 figures as eps file

    Infrared Behavior of High-Temperature QCD

    Full text link
    The damping rate \gamma_t(p) of on-shell transverse gluons with ultrasoft momentum p is calculated in the context of next-to-leading-order hard-thermal-loop-summed perturbation of high-temperature QCD. It is obtained in an expansion to second order in p. The first coefficient is recovered but that of order p^2 is found divergent in the infrared. Divergences from light-like momenta do also occur but are circumvented. Our result and method are critically discussed, particularly regarding a Ward identity obtained in the literature. When enforcing the equality between \gamma_t(0) and \gamma_l(0), a rough estimate of the magnetic mass is obtained. Carrying a similar calculation in the context of scalar quantum electrodynamics shows that the early ultrasoft-momentum expansion we make has little to do with the infrared sensitivity of the result.Comment: REVTEX4, 55 page

    Inclusive Prompt Photon Production in Hadronic Final States of e+e−e^+e^- Annihilation

    Get PDF
    We provide complete analytic expressions for the inclusive prompt photon production cross section in hadronic final states of e+e−e^+e^- annihilation reactions through one-loop order in quantum chromodynamics perturbation theory. Computed explicitly are direct photon production through first order in the electromagnetic strength αem\alpha_{em} and the quark-to-photon and gluon-to-photon fragmentation contributions through first order in the strong coupling αs\alpha_s. The full angular dependence of the cross sections is displayed, separated into transverse (1+cos⁥2Ξγ)(1 +\cos ^2\theta _\gamma) and longitudinal (sin⁥2Ξγ)(\sin ^2\theta_\gamma) components, where Ξγ\theta_\gamma specifies the direction of the photon with respect to the e+e−e^+e^- collision axis. We discuss extraction of fragmentation functions from e+e−e^+e^- data.Comment: 40 pages, RevTex, 30 figures in postscript available in a separate fil

    2PI Effective Action and Evolution Equations of N = 4 super Yang-Mills

    Full text link
    We employ nPI effective action techniques to study N = 4 super Yang-Mills, and write down the 2PI effective action of the theory. We also supply the evolution equations of two-point correlators within the theory.Comment: 16 pages, 6 figures. Figure 2 replaced, approximation scheme clarified, references adde

    Diphoton Production at Hadron Colliders and New Contact Interactions

    Full text link
    We explore the capability of the Tevatron and LHC to place limits on the possible existence of flavor-independent qqˉγγq \bar q \gamma\gamma contact interactions which can lead to an excess of diphoton events with large invariant masses. Assuming no departure from the Standard Model is observed, we show that the Tevatron will eventually be able to place a lower bound of 0.5-0.6 TeV on the scale associated with this new contact interaction. At the LHC, scales as large as 3-6 TeV may be probed with suitable detector cuts and an integrated luminosity of 100fb−1100 fb^{-1}.Comment: LaTex, 12pages plus 5 figures(available on request), SLAC-PUB-657

    Noncommutativity and Lorentz Violation in Relativistic Heavy Ion Collisions

    Get PDF
    The experimental detection of the effects of noncommuting coordinates in electrodynamic phenomena depends on the magnitude of |\theta B|, where \theta is the noncommutativity parameter and B a background magnetic field. With the present upper bound on \theta, given by \theta_{\rm bound} \simeq 1/(10 {\rm TeV})^2, there was no large enough magnetic field in nature, including those observed in magnetars, that could give visible effects or, conversely, that could be used to further improve \theta_{\rm bound}. On the other hand, recently it has been proposed that intense enough magnetic fields should be produced at the beginning of relativistic heavy ion collisions. We discuss here lepton pair production by free photons as one kind of signature of noncommutativity and Lorentz violation that could occur at RHIC or LHC. This allows us to obtain a more stringent bound on \theta, given by 10^{-3} \theta_{\rm bound}, if such "exotic" events do not occur.Comment: Five pages, no figures
    • 

    corecore