53 research outputs found

    Evidence of pseudoprogression in patients treated with PD1/ PDL1 antibodies across tumor types

    Get PDF
    Background: PD(L)1 antibodies (anti-PD(L)-1) have been a major breakthrough in several types of cancer. Novel patterns of response and progression have been described with anti-PD(L)-1. We aimed at characterizing pseudoprogression (PSPD) among patients with various solid tumor types treated by anti-PD(L)-1. Methods: All consecutive patients (pts) enrolled in phase 1 trials with advanced solid tumors and lymphomas treated in phase I clinical trials evaluating monotherapy by anti-PD(L)-1 at Gustave Roussy were analyzed. We aimed to assess prevalence and outcome of PSPD across tumor types. We also intended to describe potential clinical and pathological factors associated with PSPD. Results: A total of 169 patients treated with anti-PD(L)-1 were included in the study. Most frequent tumor types included melanoma (n = 57) and non-small cell lung cancer (n = 19). At first tumor evaluation 77 patients (46%) presented with immune unconfirmed progressive disease. Six patients (8%) experienced PSPD: 2 patients with partial response; 4 patients with stable disease. Increase in target lesions in the first CT-scan was more frequently associated to PSPD (67% vs 33%; P = .04). Patients with a PSPD had a superior survival when compared to patients progressing (median OS: 10.7 months vs 8.7 months; P = .07). Conclusions: A small subset of PSPD patients may experience response after an initial progression. Assessment of the current strategy for immune-related response evaluations may require further attention

    Repurposing infectious disease vaccines for intratumoral immunotherapy

    Get PDF
    Intratumoral delivery of viruses and virus-associated molecular patterns can achieve antitumor effects that are largely mediated by the elicitation or potentiation of immune responses against the malignancy. Attenuated vaccines are approved and marketed as good manufactiring practice (GMP)-manufactured agents whose administration might be able to induce such effects. Recent reports in mouse transplantable tumor models indicate that the rotavirus, influenza and yellow fever vaccines can be especially suitable to elicit powerful antitumor immunity against cancer following intratumoral administration. These results highlight that intratumoral anti-infectious vaccines can turn cold tumors into hot, and underscore the key role played by virus-induced type I interferon pathways to overcome resistance to immune checkpoint-targeted antibodies

    Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma

    Full text link
    BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Tumor-targeted and immune-targeted monoclonal antibodies: Going from passive to active immunotherapy

    No full text
    Monoclonal antibodies (mAbs) have inaugurated the concepts of tumor-targeted therapy and personalized medicine. A new family of mAbs is currently emerging in the clinic, which target immune cells rather than cancer cells. These immune-targeted therapies have recently demonstrated long-term tumor responses in adults with refractory/relapsing metastatic solid tumors. Pediatric cancers are different from their adult counterparts in terms of histological features and immune infiltrates. However, the same immune checkpoint targets can be expressed within the microenvironment of pediatric tumors. The benefits of immune checkpoint blockade in pediatric cancers are currently under evaluation in early phase clinical trials

    Immunotherapy for Pediatric Malignancies

    No full text
    This book provides a comprehensive overview of current immunotherapy strategies, and how these may be applicable to childhood cancers. The first part of the book reviews how the immune system recognizes cancer, and the various escape mechanisms allowing tumour growth. The importance of the tumor microenvironment and the challenges this may present to achieving effective immunotherapy are discussed. Monoclonal antibodies, cellular, cytokine and vaccine therapies are all comprehensively reviewed, with particular focus on their potential application to pediatric cancers. Practical aspects of delivering such therapies to children, likely toxicities and potential biomarkers are considered. Finally, consideration is given to how, in the longer term, such therapies may be combined with conventional therapies such as chemotherapy and radiotherapy

    T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition

    No full text
    International audienceTumor immunotherapy has had demonstrable efficacy in patients with cancer. The most promising results have been with T-cell-based therapies. These include adoptive cell transfer of tumor-infiltrating lymphocytes, genetically engineered T cells, and immune checkpoint inhibitor antibodies. In this review, we describe the different T-cell-based strategies currently in clinical trials and put their applications, present and future, into perspective. Cancer Immunol Res; 3(10); 1115-22. ©2015 AAC

    Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors

    No full text
    The authors have declared that no conflict of interest exists.International audienceCancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing

    Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naĂŻve or experienced for immune checkpoint blockade

    No full text
    Background: this phase 1b study (NCT02323191) evaluated the safety, antitumor activity, pharmacokinetics, and pharmacodynamics of colony-stimulating factor-1 receptor-blocking monoclonal antibody (mAb) emactuzumab in combination with the programmed cell death-1 ligand (PD-L1)-blocking mAb atezolizumab in patients with advanced solid tumors naĂŻve or experienced for immune checkpoint blockers (ICBs). Methods: emactuzumab (500-1350 mg flat) and atezolizumab (1200 mg flat) were administered intravenously every 3 weeks. Dose escalation of emactuzumab was conducted using the 3+3 design up to the maximum tolerated dose (MTD) or optimal biological dose (OBD). Extension cohorts to evaluate pharmacodynamics and clinical activity were conducted in metastatic ICB-naive urothelial bladder cancer (UBC) and ICB-pretreated melanoma (MEL), non-small cell lung cancer (NSCLC) and UBC patients. Results: overall, 221 patients were treated. No MTD was reached and the OBD was determined at 1000 mg of emactuzumab in combination with 1200 mg of atezolizumab. Grade ≄3 treatment-related adverse events occurred in 25 (11.3%) patients of which fatigue and rash were the most common (14 patients (6.3%) each). The confirmed objective response rate (ORR) was 9.8% for ICB-naĂŻve UBC, 12.5% for ICB-experienced NSCLC, 8.3% for ICB-experienced UBC and 5.6% for ICB-experienced MEL patients, respectively. Tumor biopsy analyses demonstrated increased activated CD8 +tumor infiltrating T lymphocytes (TILs) associated with clinical benefit in ICB-naĂŻve UBC patients and less tumor-associated macrophage (TAM) reduction in ICB-experienced compared with ICB-naĂŻve patients. Conclusion: emactuzumab in combination with atezolizumab demonstrated a manageable safety profile with increased fatigue and skin rash over usual atezolizumab monotherapy. A considerable ORR was particularly seen in ICB-experienced NSCLC patients. Increase ofCD8 +TILs under therapy appeared to be associated with persistence of a TAM subpopulation

    Phase 1 study of E7046, an inhibitor of the PGE 2

    No full text
    • 

    corecore