13 research outputs found

    Anti‐Stokes Photoluminescence of Monolayer WS2

    Get PDF
    Anti‐Stokes photoluminescence excitation of a WS2 monolayer flake between 10 and 300 K is reported herein. Even with continuous‐wave lasers at low power, the emission of the exciton at excitation 100 meV below its emission energy at room temperature is observed. A mechanism which involves the trions as the intermediate state is proposed, leading to an efficient up‐conversion process. In addition, it is demonstrated that phonons are the source of the additional energy needed by the system. Overall, the results provide evidence that anti‐Stokes luminescence in transition metal dichalcogenides is very efficient.EC/FP7/259286/EU/Characterizing and Controlling Carbon Nanomaterials/CCCANDFG, 53244630, EXC 315: Neue Materialien und Prozesse - Hierarchische Strukturbildung für funktionale BauteileDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeTU Berlin, Open-Access-Mittel - 201

    Excitonic recombinations in hBN: from bulk to exfoliated layers

    Get PDF
    Hexagonal boron nitride (h-BN) and graphite are structurally similar but with very different properties. Their combination in graphene-based devices meets now a huge research focus, and it becomes particularly important to evaluate the role played by crystalline defects in them. In this work, the cathodoluminescence (CL) properties of hexagonal boron nitride crystallites are reported and compared to those of nanosheets mechanically exfoliated from them. First the link between the presence of structural defects and the recombination intensity of bound-excitons, the so-called D series, is confirmed. Low defective h-BN regions are further evidenced by CL spectral mapping (hyperspectral imaging), allowing us to observe new features in the near-band-edge region, tentatively attributed to phonon replica of exciton recombinations. Second the h-BN thickness was reduced down to six atomic layers, using mechanical exfoliation, as evidenced by atomic force microscopy. Even at these low thicknesses, the luminescence remains intense and exciton recombination energies are not strongly modified with respect to the bulk, as expected from theoretical calculations indicating extremely compact excitons in h-BN

    Exciton and interband optical transitions in hBN single crystal

    Get PDF
    Near band gap photoluminescence (PL) of hBN single crystal has been studied at cryogenic temperatures with synchrotron radiation excitation. The PL signal is dominated by the D-series previously assigned to excitons trapped on structural defects. A much weaker S-series of self-trapped excitons at 5.778 eV and 5.804 eV has been observed using time-window PL technique. The S-series excitation spectrum shows a strong peak at 6.02 eV, assigned to free exciton absorption. Complementary photoconductivity and PL measurements set the band gap transition energy to 6.4 eV and the Frenkel exciton binding energy larger than 380 meV

    Generic nano-imprint process for fabrication of nanowire arrays

    Full text link
    A generic process has been developed to grow nearly defect free arrays of (heterostructured) InP and GaP nanowires. Soft nanoimprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires. We show that cleaning of the samples before growth with piranha solution in combination with a thermal anneal at 550 C for InP and 700 C for GaP results in uniform nanowire arrays with 1% variation in nanowire length, and without undesired extra nanowires. Our chemical cleaning procedure is applicable to other lithographic techniques such as e-beam lithography, and therefore represents a generic process.Comment: 12 pages, 4 figures, 2 table

    Propriétés structurales et optiques de nanostructures III-N semiconductrices à grand gap (nanofils d AlxGa1 xN synthétisés par épitaxie par jets moléculaires et nanostructures de nitrure de bore)

    No full text
    Ce travail de thèse s'intéresse aux propriétés structurales et optiques de semiconducteurs à grand gap de nitrure d'éléments III (AlxGa1-xN et h-BN), émettant dans l'ultraviolet (4-6 eV). Les propriétés des nano-objets étant modifiées par la réduction de dimensionnalité, un point central de ce travail a consisté à étudier des nanostructures de ces matériaux (nanofils d'AlN et d'AlxGa1-xN, nanotubes et nanofeuillets de BN). Un soin particulier a aussi été apporté à la corrélation à l'échelle nanométrique, entre la structure et la luminescence. Dans un premier temps, les nanofils d'AlxGa1-xN ont été synthétisés par épitaxie par jets moléculaires, sur des nanofils de GaN afin de promouvoir la croissance de nanostructures 1D non coalescées. Nous montrons que le gallium s'incorpore difficilement, aboutissant à des nanofils d'un alliage fortement inhomogène à plusieurs échelles (du nanomètre à la centaine de nanomètres). Ces inhomogénéités influencent grandement les propriétés optiques, dominées par des états localisés. L'ensemble des résultats nous a permis de proposer un mécanisme de croissance de ces nanofils. Dans un deuxième temps, les propriétés des nanostructures de BN ont été comparées à celles du matériau massif (le BN hexagonal). Nous montrons que jusqu à 6 couches les nanofeuillets présentent une luminescence similaire au h-BN. Cela indique une faible influence de la réduction de dimensionnalité dans le h-BN, contrairement aux nanofils des autres nitrures. Enfin, nous montrons que les principaux nanotubes étudiés dans ce travail, multiparois, présentent une structure complexe, microfacettée, et que les défauts sont probablement responsables de la luminescence observéeThis work focuses on structural and optical properties of III-nitrides wide-band gap semiconductors (AlxGa1-xN and h-BN), emitting in the ultraviolet range (4-6 eV). Nano-objects properties being modified by dimensional reduction, this work was mostly focused on the study of nanostructures of these materials (AlN and AlxGa1-xN nanowires, BN nanotubes and nanosheets). Careful search for correlation between their structure and luminescence has also been carried out. Concerning AlxGa1-xN materials, nanowires have been grown by plasma-assisted molecular beam epitaxy. The use of GaN nanowires bases has allowed us to promote the growth of non-coalesced 1D AlxGa1-xN nanostructures. We have shown that the incorporation of gallium is very temperature-dependent, giving rise to nanowires made of a highly inhomogeneous alloy at several scales (from nanometer to a hundred nanometers). These inhomogeneities strongly influence the optical properties, dominated by localized states. Altogether these results allow us to propose a growth mechanism of these nanowires. Concerning BN materials, comparison of the properties of nanostructures with those of the bulk material (hexagonal BN) has been carried out. After that h-BN bulk has been further investigated, we have revealed that nanosheets with more than 6 monolayers present a luminescence similar to h-BN. This indicates a low influence of dimensional reduction in h-BN, contrary to the case of nanowires made of other nitrides. Finally we have shown that the main nanotubes investigated in this work, which are multiwall, have a complex structure that is micro-faceted, and that the defects are likely responsible of the observed luminescence.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    DNA Hybridization Measured with Graphene Transistor Arrays

    No full text
    International audienceArrays of field-effect transistors are fabricated from chemical vapor deposition grown graphene (GFETs) and label-free detection of DNA hybridization performed down to femtomolar concentrations. A process is developed for large-area graphene sheets, which includes a thin Al 2 O 3 layer, protecting the graphene from contamination during photolithographic patterning and a SiO x capping for biocompatibility. It enables fabrication of high-quality transistor arrays, exhibiting stable close-to-zero Dirac point voltages under ambient conditions. Passivation of the as-fabricated chip with a layer composed of two different oxides avoids direct electrochemical contact between the DNA solutions and the graphene layer during hybridization detection. DNA probe molecules are electrostatically immobilized via poly-l-lysine coating of the chip surface. Adsorption of this positively charged polymer induces a positive shift of the Dirac point and subsequent immobilization of negatively charged DNA probes induces a negative shift. Spatially resolved hybridization of DNA sequences is performed on the GFET arrays. End-point as well as real-time in situ measurements of hybridization are achieved. A detection limit of 10 fm is observed for hybridization of 20-nucleotide DNA targets. Typical voltage signals are around 100 mV and spurious drifts below 1 mV per hour

    DIMA-fr: a French adaptation and standardization of the Dutch Diagnostic Instrument for Mild Aphasia (DIMA-nl)

    No full text
    The Dutch Diagnostic Instrument for Mild Aphasia (DIMA-nl) is a standardized battery recently created for evaluating the language performance of patients during the perioperative period of glioma surgery. Our aim was to establish normative data for the DIMA-fr, a French version of the DIMA-nl. The DIMA-nl was first adapted to French. The 14 subtasks of the DIMA-fr were then administered to 391 participants recruited from the general French population. The effects of sex, age and level of education were determined by analysis of variance (ANOVA). Normative data were computed as means, medians, standard deviations and percentiles. Our results demonstrated that age and level of education had an effect on the performance of all subtests but not sex. We thus stratified the norms into four different groups: (i) 18–69 years-old with Baccalauréat (Bac, the French High School Diploma) (n = 246); (ii) 18–69 years-old without Bac (n = 70); (iii) >70 years-old with Bac (n = 48); (iv) >70 years-old without Bac (n = 27). The DIMA-fr is thus the first standardized French battery of tests to specifically assess language during the perioperative period of awake glioma surgery. However, to be used in the clinic, the DIMA-fr must now be validated in patients. The DIMA, which is currently standardized in several languages, could become a reference tool for international studies

    Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride

    No full text
    International audienceSingle photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization offered by this class of materials. However, accurate control of both the spatial location and the emission wavelength of the quantum emitters is essentially lacking to date, thus hindering further technological steps towards scalable quantum photonic devices. Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations. SPE ensembles are generated with a spatial accuracy better than the cubed emission wavelength, thus opening the way to integration in optical microstructures. Stable and bright single photon emission is subsequently observed in the visible range up to room temperature upon non-resonant laser excitation. Moreover, the low-temperature emission wavelength is reproducible, with an ensemble distribution of width 3 meV, a statistical dispersion that is more than one order of magnitude lower than the narrowest wavelength spreads obtained in epitaxial hBN samples. Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials
    corecore