13 research outputs found

    Kaposi's Sarcoma Herpesvirus microRNAs Target Caspase 3 and Regulate Apoptosis

    Get PDF
    Kaposi's sarcoma herpesvirus (KSHV) encodes a cluster of twelve micro (mi)RNAs, which are abundantly expressed during both latent and lytic infection. Previous studies reported that KSHV is able to inhibit apoptosis during latent infection; we thus tested the involvement of viral miRNAs in this process. We found that both HEK293 epithelial cells and DG75 cells stably expressing KSHV miRNAs were protected from apoptosis. Potential cellular targets that were significantly down-regulated upon KSHV miRNAs expression were identified by microarray profiling. Among them, we validated by luciferase reporter assays, quantitative PCR and western blotting caspase 3 (Casp3), a critical factor for the control of apoptosis. Using site-directed mutagenesis, we found that three KSHV miRNAs, miR-K12-1, 3 and 4-3p, were responsible for the targeting of Casp3. Specific inhibition of these miRNAs in KSHV-infected cells resulted in increased expression levels of endogenous Casp3 and enhanced apoptosis. Altogether, our results suggest that KSHV miRNAs directly participate in the previously reported inhibition of apoptosis by the virus, and are thus likely to play a role in KSHV-induced oncogenesis

    Etude comparative de couples ARNt/aminoacyl-ARNt synthétases chez la levure et la mitochondrie humaine.

    No full text
    soutenue le 18 novembre 2005.My work has focused on the specific recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (aaRSs), an obligate prerequisite for translation fidelity. I have taken advantage of molecular biology strategies, based on in vitro transcribed tRNAs and cloned enzymes, to explore the structure/function relationships of yeast and human mitochondrial (mt) aminoacylation systems using large mutagenic analyses. Structural and functional aspects were further tackled by crystallization assays and in vivo approaches, respectively.So far, it was believed that recognition and aminoacylation rules of isoacceptor tRNAs from a given organism are identical. Investigation of the family of arginine isoaccepting tRNAs in yeast and its peculiar relationship with tRNAAsp lead me to the followingdiscoveries: (i) isoacceptors are aminoacylated with different efficiencies (~20 fold range) and are protected from mischarging by idiosyncratic antideterminants, (ii) isoacceptor tRNA4Arg is a remnant aspartate acceptor since only two point mutations were sufficient to convert its specificity - this is a direct example of genesis of molecular diversity from a common ancestor. Aminoacylation systems of mammalian mitochondria remain under-explored despite their tRNAs, coded by mt genome, are structurally "bizarre" and involved in severe disorders.Our efforts lead to the assignment of 10 missing nuclear genes coding for human mt aaRSs, which turned out to be encoded by a different set of genes than the one for cytosolic aaRSs.Detailed analysis of the aspartylation system, chosen as a model mt system, revealed (i) less stringent identity of a mt tRNA than of classical tRNAs, (ii) a subtle and focused adaptation of the bacterial-type nuclear-encoded mt AspRS. This illustrates co-evolutionary processes of the human mt and nuclear genomes. Further, I have uncovered the signals hindering a mttRNAAsp to be a substrate for a non-mt aaRS. Strikingly, it is not the global structural degeneracy of the tRNA which hinders the most cross-aminoacylation, but a single base-pair in the D-stem.Le travail de cette thĂšse s'inscrit dans le cadre de l'Ă©tude des rĂšgles qui rĂ©gissent la spĂ©cificitĂ© d'aminoacylation des ARN de transfert (ARNt) par les aminoacyl-ARNt synthĂ©tases (aaRS). La prĂ©cision de cette rĂ©action est cruciale puisqu'elle dĂ©termine la fidĂ©litĂ© de la traduction de l'information gĂ©nĂ©tique et la synthĂšse de protĂ©ines fonctionnelles. J'ai tirĂ© profit des stratĂ©gies de biologie molĂ©culaire, basĂ©es sur la transcription in vitro des ARNt, la production d'enzymes clonĂ©es, et la mutagĂ©nĂšse, afin d'explorer les relations structure/fonction des systĂšmes d'aminoacylation de levure et de la mitochondrie humaine.Les aspects fonctionnels et structuraux ont Ă©tĂ© davantage explorĂ©s par des essais de cristallisation et des approches in vivo.Jusqu'Ă  prĂ©sent, il Ă©tait admis que les rĂšgles de reconnaissance et d'aminoacylation d'ARNt isoaccepteurs pour un systĂšme donnĂ© devaient ĂȘtre identiques. L'analyse d'une famille d'ARNt isoaccepteurs de l'arginine de levure et de sa relation particuliĂšre avec l'ARNtAsp nous ont permis d'Ă©tablir que : (i) les isoaccepteurs sont arginylĂ©s avec des efficacitĂ©s diffĂ©rentes (un facteur 20 les sĂ©pare) et sont protĂ©gĂ©s de la misaminoacylation par des antidĂ©terminants idiosyncrasiques, (ii) l'isoaccepteur ARNt4Arg possĂšde des propriĂ©tĂ©s d'aspartylation, vestiges de son histoire Ă©volutive, puisque seulement deux mutations sontsuffisantes pour convertir sa spĂ©cificitĂ© – c'est un exemple de gĂ©nĂ©ration de la diversitĂ© molĂ©culaire par duplication de gĂšnes. Les systĂšmes d'aminoacylation mt de mammifĂšres restent peu Ă©tudiĂ©s, et ce malgrĂ© la « bizarrerie » structurale et l'implication dans despathologies sĂ©vĂšres de leurs ARNt, codĂ©s par le gĂ©nome mt. Nos efforts ont permis l'assignement des 10 gĂšnes nuclĂ©aires manquants codant pour les aaRS mt humaines. Ceux-cisont portĂ©s par un jeu de gĂšnes diffĂ©rents de celui codant pour les sysnthĂ©tases cytoplasmiques. L'analyse dĂ©taillĂ©e du systĂšme d'aspartylation, choisi comme systĂšme modĂšle a rĂ©vĂ©lĂ© (i) une identitĂ© de l'ARNt mt moins stringente que celle des ARNt classiques, (ii) une adaptation subtile et ciblĂ©e de l'aaRS mt, codĂ©e par le gĂ©nome nuclĂ©aire et de type bactĂ©rien. Ceci illustre un processus de co-Ă©volution entre les gĂ©nomes mt et nuclĂ©airehumain. De plus, j'ai dĂ©terminĂ© les signaux qui protĂšgent l'ARNtAsp mt d'ĂȘtre un substrat des aaRS non mt. De maniĂšre surprenante, ce n'est pas la dĂ©gĂ©nĂ©rescence structurale globale del'ARNt qui empĂȘche le plus cette aminoacylation croisĂ©e mais une simple paire de bases du bras D

    Comparative analysis of tRNA / aminoacyl-tRNA synthetases couples in the yeast and human mitochondria

    No full text
    Le travail de cette thĂšse s'inscrit dans le cadre de l'Ă©tude des rĂšgles qui rĂ©gissent la spĂ©cificitĂ© d'aminoacylation des ARN de transfert (ARNt) par les aminoacyl-ARNt synthĂ©tases (aaRS). La prĂ©cision de cette rĂ©action est cruciale puisqu'elle dĂ©termine la fidĂ©litĂ© de la traduction de l'information gĂ©nĂ©tique et la synthĂšse de protĂ©ines fonctionnelles. J'ai tirĂ© profit des stratĂ©gies de biologie molĂ©culaire, basĂ©es sur la transcription in vitro des ARNt, la production d'enzymes clonĂ©es, et la mutagĂ©nĂšse, afin d'explorer les relations structure/fonction des systĂšmes d'aminoacylation de levure et de la mitochondrie humaine. Les aspects fonctionnels et structuraux ont Ă©tĂ© davantage explorĂ©s par des essais de cristallisation et des approches in vivo.Jusqu'Ă  prĂ©sent, il Ă©tait admis que les rĂšgles de reconnaissance et d'aminoacylation d'ARNt isoaccepteurs pour un systĂšme donnĂ© devaient ĂȘtre identiques. L'analyse d'une famille d'ARNt isoaccepteurs de l'arginine de levure et de sa relation particuliĂšre avec l'ARNtAsp nous ont permis d'Ă©tablir que : (i) les isoaccepteurs sont arginylĂ©s avec des efficacitĂ©s diffĂ©rentes (un facteur 20 les sĂ©pare) et sont protĂ©gĂ©s de la misaminoacylation par des antidĂ©terminants idiosyncrasiques, (ii) l'isoaccepteur ARNt4Arg possĂšde des propriĂ©tĂ©s d'aspartylation, vestiges de son histoire Ă©volutive, puisque seulement deux mutations sont suffisantes pour convertir sa spĂ©cificitĂ© c'est un exemple de gĂ©nĂ©ration de la diversitĂ© molĂ©culaire par duplication de gĂšnes. Les systĂšmes d'aminoacylation mt de mammifĂšres restent peu Ă©tudiĂ©s, et ce malgrĂ© la " bizarrerie " structurale et l'implication dans des pathologies sĂ©vĂšres de leurs ARNt, codĂ©s par le gĂ©nome mt. Nos efforts ont permis l'assignement des 10 gĂšnes nuclĂ©aires manquants codant pour les aaRS mt humaines. Ceux-ci sont portĂ©s par un jeu de gĂšnes diffĂ©rents de celui codant pour les sysnthĂ©tases cytoplasmiques. L'analyse dĂ©taillĂ©e du systĂšme d'aspartylation, choisi comme systĂšme modĂšle a rĂ©vĂ©lĂ© (i) une identitĂ© de l'ARNt mt moins stringente que celle des ARNt classiques, (ii) une adaptation subtile et ciblĂ©e de l'aaRS mt, codĂ©e par le gĂ©nome nuclĂ©aire et de type bactĂ©rien. Ceci illustre un processus de co-Ă©volution entre les gĂ©nomes mt et nuclĂ©aire humain. De plus, j'ai dĂ©terminĂ© les signaux qui protĂšgent l'ARNtAsp mt d'ĂȘtre un substrat des aaRS non mt. De maniĂšre surprenante, ce n'est pas la dĂ©gĂ©nĂ©rescence structurale globale de l'ARNt qui empĂȘche le plus cette aminoacylation croisĂ©e mais une simple paire de bases du bras D.My work has focused on the specific recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (aaRSs), an obligate prerequisite for translation fidelity. I have taken advantage of molecular biology strategies, based on in vitro transcribed tRNAs and cloned enzymes, to explore the structure/function relationships of yeast and human mitochondrial (mt) aminoacylation systems using large mutagenic analyses. Structural and functional aspects were further tackled by crystallization assays and in vivo approaches, respectively.So far, it was believed that recognition and aminoacylation rules of isoacceptor tRNAs from a given organism are identical. Investigation of the family of arginine isoaccepting tRNAs in yeast and its peculiar relationship with tRNAAsp lead me to the following discoveries: (i) isoacceptors are aminoacylated with different efficiencies (~20 fold range) and are protected from mischarging by idiosyncratic antideterminants, (ii) isoacceptor tRNA4Arg is a remnant aspartate acceptor since only two point mutations were sufficient to convert its specificity - this is a direct example of genesis of molecular diversity from a common ancestor. Aminoacylation systems of mammalian mitochondria remain under-explored despite their tRNAs, coded by mt genome, are structurally "bizarre" and involved in severe disorders. Our efforts lead to the assignment of 10 missing nuclear genes coding for human mt aaRSs, which turned out to be encoded by a different set of genes than the one for cytosolic aaRSs. Detailed analysis of the aspartylation system, chosen as a model mt system, revealed (i) less stringent identity of a mt tRNA than of classical tRNAs, (ii) a subtle and focused adaptation of the bacterial-type nuclear-encoded mt AspRS. This illustrates co-evolutionary processes of the human mt and nuclear genomes. Further, I have uncovered the signals hindering a mt tRNAAsp to be a substrate for a non-mt aaRS. Strikingly, it is not the global structural degeneracy of the tRNA which hinders the most cross-aminoacylation, but a single base-pair in the D-stem

    Comparative analysis of tRNA / aminoacyl-tRNA synthetases couples in the yeast and human mitochondria

    No full text
    Le travail de cette thÚse s'inscrit dans le cadre de l'étude des rÚgles qui régissent la spécificité d'aminoacylation des ARN de transfert (ARNt) par les aminoacyl-ARNt synthétases (aaRS). La précision de cette réaction est cruciale puisqu'elle détermineMy work has focused on the specific recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (aaRSs), an obligate prerequisite for translation fidelity. I have taken advantage of molecular biology strategies, based on in vitro transcribed tRNA

    Etude comparative de couples ARNt / aminoacyl-ARNt synthétases chez la levure et la mitochondrie humaine

    No full text
    Le travail de cette thĂšse s'inscrit dans le cadre de l'Ă©tude des rĂšgles qui rĂ©gissent la spĂ©cificitĂ© d'aminoacylation des ARN de transfert (ARNt) par les aminoacyl-ARNt synthĂ©tases (aaRS). La prĂ©cision de cette rĂ©action est cruciale puisqu'elle dĂ©termine la fidĂ©litĂ© de la traduction de l'information gĂ©nĂ©tique et la synthĂšse de protĂ©ines fonctionnelles. J'ai tirĂ© profit des stratĂ©gies de biologie molĂ©culaire, basĂ©es sur la transcription in vitro des ARNt, la production d'enzymes clonĂ©es, et la mutagĂ©nĂšse, afin d'explorer les relations structure/fonction des systĂšmes d'aminoacylation de levure et de la mitochondrie humaine. Les aspects fonctionnels et structuraux ont Ă©tĂ© davantage explorĂ©s par des essais de cristallisation et des approches in vivo.Jusqu'Ă  prĂ©sent, il Ă©tait admis que les rĂšgles de reconnaissance et d'aminoacylation d'ARNt isoaccepteurs pour un systĂšme donnĂ© devaient ĂȘtre identiques. L'analyse d'une famille d'ARNt isoaccepteurs de l'arginine de levure et de sa relation particuliĂšre avec l'ARNtAsp nous ont permis d'Ă©tablir que: (i) les isoaccepteurs sont arginylĂ©s avec des efficacitĂ©s diffĂ©rentes (un facteur 20 les sĂ©pare) et sont protĂ©gĂ©s de la misaminoacylation par des antidĂ©terminants idiosyncrasiques, (ii) l'isoaccepteur ARNt4Arg possĂšde des propriĂ©tĂ©s d'aspartylation, vestiges de son histoire Ă©volutive, puisque seulement deux mutations sont suffisantes pour convertir sa spĂ©cificitĂ© c'est un exemple de gĂ©nĂ©ration de la diversitĂ© molĂ©culaire par duplication de gĂšnes. Les systĂšmes d'aminoacylation mt de mammifĂšres restent peu Ă©tudiĂ©s, et ce malgrĂ© la "bizarrerie" structurale et l'implication dans des pathologies sĂ©vĂšres de leurs ARNt, codĂ©s par le gĂ©nome mt. Nos efforts ont permis l'assignement des 10 gĂšnes nuclĂ©aires manquants codant pour les aaRS mt humaines. Ceux-ci sont portĂ©s par un jeu de gĂšnes diffĂ©rents de celui codant pour les sysnthĂ©tases cytoplasmiques. L'analyse dĂ©taillĂ©e du systĂšme d'aspartylation, choisi comme systĂšme modĂšle a rĂ©vĂ©lĂ© (i) une identitĂ© de l'ARNt mt moins stringente que celle des ARNt classiques, (ii) une adaptation subtile et ciblĂ©e de l'aaRS mt, codĂ©e par le gĂ©nome nuclĂ©aire et de type bactĂ©rien. Ceci illustre un processus de co-Ă©volution entre les gĂ©nomes mt et nuclĂ©aire humain. De plus, j'ai dĂ©terminĂ© les signaux qui protĂšgent l'ARNtAsp mt d'ĂȘtre un substrat des aaRS non mt. De maniĂšre surprenante, ce n'est pas la dĂ©gĂ©nĂ©rescence structurale globale de l'ARNt qui empĂȘche le plus cette aminoacylation croisĂ©e mais une simple paire de bases du bras D.My work has focused on the specific recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (aaRSs), an obligate prerequisite for translation fidelity. I have taken advantage of molecular biology strategies, based on in vitro transcribed tRNAs and cloned enzymes, to explore the structure/function relationships of yeast and human mitochondrial (mt) aminoacylation systems using large mutagenic analyses. Structural and functional aspects were further tackled by crystallization assays and in vivo approaches, respectively.So far, it was believed that recognition and aminoacylation rules of isoacceptor tRNAs from a given organism are identical. Investigation of the family of arginine isoaccepting tRNAs in yeast and its peculiar relationship with tRNAAsp lead me to the following discoveries: (i) isoacceptors are aminoacylated with different efficiencies (~20 fold range) and are protected from mischarging by idiosyncratic antideterminants, (ii) isoacceptor tRNA4Arg is a remnant aspartate acceptor since only two point mutations were sufficient to convert its specificity - this is a direct example of genesis of molecular diversity from a common ancestor. Aminoacylation systems of mammalian mitochondria remain under-explored despite their tRNAs, coded by mt genome, are structurally "bizarre" and involved in severe disorders. Our efforts lead to the assignment of 10 missing nuclear genes coding for human mt aaRSs, which turned out to be encoded by a different set of genes than the one for cytosolic aaRSs. Detailed analysis of the aspartylation system, chosen as a model mt system, revealed (i) less stringent identity of a mt tRNA than of classical tRNAs, (ii) a subtle and focused adaptation of the bacterial-type nuclear-encoded mt AspRS. This illustrates co-evolutionary processes of the human mt and nuclear genomes. Further, I have uncovered the signals hindering a mt tRNAAsp to be a substrate for a non-mt aaRS. Strikingly, it is not the global structural degeneracy of the tRNA which hinders the most cross-aminoacylation, but a single base-pair in the D-stem.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Regulation of primary microRNA processing

    No full text
    International audienceMicroRNAs (miRNAs) are evolutionarily conserved small regulatory RNAs that participate in the adjustment of many, if not all, fundamental biological processes. Molecular mechanisms involved in miRNA biogenesis and mode of action have been elucidated in the past two decades. Similar to many cellular pathways, miRNA processing and function can be globally or specifically regulated at several levels and by numerous proteins and RNAs. Given their role as fine-tuning molecules, it is essential for miRNA expression to be tightly regulated in order to maintain cellular homeostasis. Here, we review our current knowledge of the first step of their maturation occurring in the nucleus and how it can be specifically and dynamically modulated

    A yeast arginine specific tRNA is a remnant aspartate acceptor

    Get PDF
    High specificity in aminoacylation of transfer RNAs (tRNAs) with the help of their cognate aminoacyl-tRNA synthetases (aaRSs) is a guarantee for accurate genetic translation. Structural and mechanistic peculiarities between the different tRNA/aaRS couples, suggest that aminoacylation systems are unrelated. However, occurrence of tRNA mischarging by non-cognate aaRSs reflects the relationship between such systems. In Saccharomyces cerevisiae, functional links between arginylation and aspartylation systems have been reported. In particular, it was found that an in vitro transcribed tRNA(Asp) is a very efficient substrate for ArgRS. In this study, the relationship of arginine and aspartate systems is further explored, based on the discovery of a fourth isoacceptor in the yeast genome, tRNA(4)(Arg). This tRNA has a sequence strikingly similar to that of tRNA(Asp) but distinct from those of the other three arginine isoacceptors. After transplantation of the full set of aspartate identity elements into the four arginine isoacceptors, tRNA(4)(Arg) gains the highest aspartylation efficiency. Moreover, it is possible to convert tRNA(4)(Arg) into an aspartate acceptor, as efficient as tRNA(Asp), by only two point mutations, C38 and G73, despite the absence of the major anticodon aspartate identity elements. Thus, cryptic aspartate identity elements are embedded within tRNA(4)(Arg). The latent aspartate acceptor capacity in a contemporary tRNA(Arg) leads to the proposal of an evolutionary link between tRNA(4)(Arg) and tRNA(Asp) genes

    RNAs actively cycle on the Sm-like protein Hfq

    No full text
    Hfq, a protein required for small RNA (sRNA)-mediated regulation in bacteria, binds RNA with low-nanomolar Kd values and long half-lives of complexes (>100 min). This cannot be reconciled with the 1- 2-min response time of regulation in vivo. We show that RNAs displace each other on Hfq on a short time scale by RNA concentration-driven (active) cycling. Already at submicromolar concentrations of competitor RNA, half-lives of RNA–Hfq complexes are ≈1 min. We propose that competitor RNA associates transiently with RNA–Hfq complexes, RNAs exchange binding sites, and one of the RNAs eventually dissociates. This solves the “strong binding–high turnover” paradox and permits efficient use of the Hfq pool

    Adaptation of aminoacylation identity rules to mammalian mitochondria.

    No full text
    Many mammalian mitochondrial aminoacyl-tRNA synthetases are of bacterial-type and share structural domains with homologous bacterial enzymes of the same specificity. Despite this high similarity, synthetases from bacteria are known for their inability to aminoacylate mitochondrial tRNAs, while mitochondrial enzymes do aminoacylate bacterial tRNAs. Here, the reasons for non-aminoacylation by a bacterial enzyme of a mitochondrial tRNA have been explored. A mutagenic analysis performed on in vitro transcribed human mitochondrial tRNA(Asp) variants tested for their ability to become aspartylated by Escherichia coli aspartyl-tRNA synthetase, reveals that full conversion cannot be achieved on the basis of the currently established tRNA/synthetase recognition rules. Integration of the full set of aspartylation identity elements and stabilization of the structural tRNA scaffold by restoration of D- and T-loop interactions, enable only a partial gain in aspartylation efficiency. The sequence context and high structural instability of the mitochondrial tRNA are additional features hindering optimal adaptation of the tRNA to the bacterial enzyme. Our data support the hypothesis that non-aminoacylation of mitochondrial tRNAs by bacterial synthetases is linked to the large sequence and structural relaxation of the organelle encoded tRNAs, itself a consequence of the high rate of mitochondrial genome divergence
    corecore