4 research outputs found

    Origin and physiopathology of cortical malformation : periventricular nodular heterotopia due to mutations in FLNA gene.

    No full text
    Les hétérotopies nodulaires périventriculaires (HNP) correspondent aux malformations cérébrales les plus fréquemment découvertes à l'âge adulte. Survenant au cours de la migration, elles consistent en l'apparition de nodules de neurones ectopiques positionnés le long de la paroi des ventricules latéraux. Sur le plan clinique, les HNP associent une épilepsie et/ou un retard mental. Les mutations dans le gène FLNA (Xq28) représentent la cause majeure des HNP. Une forme récessive rare d'HNP liée à des mutations du gène ARFGEF2 (20q13) et des réarrangements chromosomiques identifiés chez des patients présentant une HNP ont également été rapportés. Alors que le lien entre les HNP associées à des mutations du gène FLNA et leurs manifestations cliniques a été clairement établi, les mécanismes physiopathologiques sous-jacents restent à ce jour inconnus. Deux lignées de souris knockout pour FlnA ont été développées mais aucune de ces deux lignées n'a développé d'HNP. Nous avons donc choisi de créer un nouveau modèle, chez le rat, par inactivation in utero du gène FlnA en utilisant la technique de l'ARN interférence (RNAi). Par cette approche, nous avons reproduit avec succès un phénotype d'HNP chez le rat comparable à celui observé chez les patients. Sur ce modèle, nous avons montré que l'HNP est associée à une désorganisation de la glie radiaire et à une incapacité des progéniteurs neuronaux de progresser dans le cycle cellulaire. En accord avec ces observations, une désorganisation de la glie radiaire a été également observée dans des cerveaux post-mortem de deux patientes présentant une HNP associée à une mutation de FLNA.Periventricular nodular heterotopia (PNH) is a brain malformation caused by defective neuronal migration resulting in ectopic neuronal nodules lining the lateral ventricles. Most patients have epilepsy, with normal to borderline cognitive function. Mutations in FLNA are the main cause of PH. A rare recessive form caused by mutations in the ARFGEF2 gene (20q13) and chromosomal rearrangements identified in patients with PNH have been reported. The link between FLNA-trelated PH and clinical manifestattions has been wee established but the underlying pathological mechanism remains unknown. Though two FlnA knockout mice strains have been developed, progress has been hindered by the fact that none of them showed the presence of ectopic nodules. Therefore, to recapitulate the loss of FlnA function in the developing rat brain, we used an in utero RNA interference (RNAi)-mediated knockdown approach and successfully reproduced a PNH phenotype in rats comparable to that observed in patients. Using this FlnA knockdown rodent model, we demonstrated that PNH is associated with a disruption in radial glial scaffold integrity in the ventricular zone and also an inability for neuroprogenitor cells to progress adequately through the cell cycle.Consistent with the observations made in rodents, we found similar alterations of radial glia in postmortem brains of two PNH patients harboring distinct FLNA mutations. These data highlights the complexity of the pathogenesis of PNH, the likelihood that several mechanisms are coalescing to lead to disrupted neuronal migration

    Hub GABA Neurons Mediate Gamma-Frequency Oscillations at Ictal-like Event Onset in the Immature Hippocampus

    Get PDF
    International audienceGamma-frequency oscillations (GFOs, >40 Hz) are a general network signature at seizure onset at all stages of development, with possible deleterious consequences in the immature brain. At early developmental stages, the simultaneous occurrence of GFOs in different brain regions suggests the existence of a long-ranging synchronizing mechanism at seizure onset. Here, we show that hippocamposeptal (HS) neurons, which are GABA long-range projection neurons, are mandatory to drive the firing of hippocampal interneurons in a highfrequency regime at the onset of epileptiform discharges in the intact, immature septohippocampal formation. The synchronized firing of interneurons in turn produces GFOs, which are abolished after the elimination of a small number of HS neurons. Because they provide the necessary fast conduit for pacing large neuronal populations and display intra-and extrahippocampal long-range projections, HS neurons appear to belong to the class of hub cells that play a crucial role in the synchronization of developing networks
    corecore