718 research outputs found

    Language in tuberculosis services: can we change to patient-centred terminology and stop the paradigm of blaming the patients?

    Get PDF
    The words 'defaulter', 'suspect' and 'control' have been part of the language of tuberculosis (TB) services for many decades, and they continue to be used in international guidelines and in published literature. From a patient perspective, it is our opinion that these terms are at best inappropriate, coercive and disempowering, and at worst they could be perceived as judgmental and criminalising, tending to place the blame of the disease or responsibility for adverse treatment outcomes on one side-that of the patients. In this article, which brings together a wide range of authors and institutions from Africa, Asia, Latin America, Europe and the Pacific, we discuss the use of the words 'defaulter', 'suspect' and 'control' and argue why it is detrimental to continue using them in the context of TB. We propose that 'defaulter' be replaced with 'person lost to follow-up'; that 'TB suspect' be replaced by 'person with presumptive TB' or 'person to be evaluated for TB'; and that the term 'control' be replaced with 'prevention and care' or simply deleted. These terms are non-judgmental and patient-centred. We appeal to the global Stop TB Partnership to lead discussions on this issue and to make concrete steps towards changing the current paradigm

    Evaluating the reliability of non-specialist observers in the behavioural assessment of semi-captive Asian elephant welfare

    Get PDF
    Recognising stress is an important component in maintaining the welfare of captive animal populations, and behavioural observation provides a rapid and non-invasive method to do this. Despite substantial testing in zoo elephants, there has been relatively little interest in the application of behavioural assessments to the much larger working populations of Asian elephants across Southeast Asia, which are managed by workers possessing a broad range of behavioural knowledge. Here, we developed a new ethogram of potential stress- and work-related behaviour for a semi-captive population of Asian elephants. We then used this to collect observations from video footage of over 100 elephants and evaluated the reliability of behavioural welfare assessments carried out by non-specialist observers. From observations carried out by different raters with no prior experience of elephant research or management, we tested the reliability of observations between-observers, to assess the general inter-observer agreement, and within-observers, to assess the consistency in behaviour identification. The majority of ethogram behaviours were highly reliable both between- and within-observers, suggesting that overall, behaviour was highly objective and could represent easily recognisable markers for behavioural assessments. Finally, we analysed the repeatability of individual elephant behaviour across behavioural contexts, demonstrating the importance of incorporating a personality element in welfare assessments. Our findings highlight the potential of non-expert observers to contribute to the reliable monitoring of Asian elephant welfare across large captive working populations, which may help to both improve elephant wellbeing and safeguard human workers

    A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug L-asparaginase

    Get PDF
    l-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative. Here, we now report that 2 lysosomal cysteine proteases present in lymphoblasts are able to degrade l-asparaginase. Cathepsin B (CTSB), which is produced constitutively by normal and leukemic cells, degraded asparaginase produced by Escherichia coli (ASNase) and Erwinia chrysanthemi. Asparaginyl endopeptidase (AEP), which is overexpressed predominantly in high-risk subsets of ALL, specifically degraded ASNase. AEP thereby destroys ASNase activity and may also potentiate antigen processing, leading to allergic reactions. Using AEP-mediated cleavage sequences, we modeled the effects of the protease on ASNase and created a number of recombinant ASNase products. The N24 residue on the flexible active loop was identified as the primary AEP cleavage site. Sole modification at this site rendered ASNase resistant to AEP cleavage and suggested a key role for the flexible active loop in determining ASNase activity. We therefore propose what we believe to be a novel mechanism of drug resistance to ASNase. Our results may help to identify alternative therapeutic strategies with the potential of further improving outcome in childhood ALL

    Towards a Virtual Fencing System: Training Domestic Sheep Using Audio Stimuli

    Get PDF
    Fencing in livestock management is essential for location and movement control yet with conventional methods to require close labour supervision, leading to increased costs and reduced flexibility. Consequently, virtual fencing systems (VF) have recently gained noticeable attention as an effective method for the maintenance and control of restricted areas for animals. Existing systems to control animal movement use audio followed by controversial electric shocks which are prohibited in various countries. Accordingly, the present work has investigated the sole application of audio signals in training and managing animal behaviour. Audio cues in the range of 125–17 kHz were used to prohibit the entrance of seven Hebridean ewes from a restricted area with a feed bowl. Two trials were performed over the period of a year which were video recorded. Sound signals were activated when the animal approached a feed bowl and a restricted area with no feed bowl present. Results from both trials demonstrated that white noise and sounds in the frequency ranges of 125–440 Hz to 10–17 kHz successfully discouraged animals from entering a specific area with an overall success rate of 89.88% (white noise: 92.28%, 10–14 kHz: 89.13%, 15–17 kHz: 88.48%, 125–440 Hz: 88.44%). The study demonstrated that unaided audio stimuli were effective at managing virtual fencing for sheep

    Primary Hepatosplenic Large B-Cell Lymphoma: A Rare Aggressive Tumor

    Get PDF
    Diffuse large B-cell lymphoma is the most common form of lymphoma. It usually begins in the lymph nodes; up to 40% may have an extranodal presentation. According to a definition of primary extranodal lymphoma with presentation only in extranodal sites, there are reports of large B-cell lymphomas limited to liver or spleen as separate entities, and to date there have been only three documented cases of primary hepatosplenic presentation. This paper reports a fourth case. Due to a review of the literature and the clinical course of the case reported, we conclude that primary hepatosplenic large B-cell lymphoma has been found predominantly in females older than 60 years. The patients reported had <2 months of evolution prior to diagnosis, prominent B symptoms, splenomegaly in three and hepatomegaly in two, none with lymph node involvement. All had thrombocytopenia and abnormal liver function tests; three had anemia and elevated serum lactic dehydrogenase levels, two with hemophagocytosis in bone marrow. Because of the previously mentioned data, it can be stated that primary hepatosplenic lymphoma is an uncommon and aggressive form of disease that requires immediate recognition and treatment

    Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images

    Get PDF
    Background: Convolutional neural network (CNN) based segmentation methods provide an efficient and automated way for clinicians to assess the structure and function of the heart in cardiac MR images. While CNNs can generally perform the segmentation tasks with high accuracy when training and test images come from the same domain (e.g., same scanner or site), their performance often degrades dramatically on images from different scanners or clinical sites. / Methods: We propose a simple yet effective way for improving the network generalization ability by carefully designing data normalization and augmentation strategies to accommodate common scenarios in multi-site, multi-scanner clinical imaging data sets. We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy. Specifically, the method was trained on a large set of 3,975 subjects from the UK Biobank. It was then directly tested on 600 different subjects from the UK Biobank for intra-domain testing and two other sets for cross-domain testing: the ACDC dataset (100 subjects, 1 site, 2 scanners) and the BSCMR-AS dataset (599 subjects, 6 sites, 9 scanners). / Results: The proposed method produces promising segmentation results on the UK Biobank test set which are comparable to previously reported values in the literature, while also performing well on cross-domain test sets, achieving a mean Dice metric of 0.90 for the left ventricle, 0.81 for the myocardium, and 0.82 for the right ventricle on the ACDC dataset; and 0.89 for the left ventricle, 0.83 for the myocardium on the BSCMR-AS dataset. / Conclusions: The proposed method offers a potential solution to improve CNN-based model generalizability for the cross-scanner and cross-site cardiac MR image segmentation task

    Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images

    Get PDF
    Convolutional neural network (CNN) based segmentation methods provide an efficient and automated way for clinicians to assess the structure and function of the heart in cardiac MR images. While CNNs can generally perform the segmentation tasks with high accuracy when training and test images come from the same domain (e.g. same scanner or site), their performance often degrades dramatically on images from different scanners or clinical sites. We propose a simple yet effective way for improving the network generalization ability by carefully designing data normalization and augmentation strategies to accommodate common scenarios in multi-site, multi-scanner clinical imaging data sets. We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy. Specifically, the method was trained on a large set of 3,975 subjects from the UK Biobank. It was then directly tested on 600 different subjects from the UK Biobank for intra-domain testing and two other sets for cross-domain testing: the ACDC dataset (100 subjects, 1 site, 2 scanners) and the BSCMR-AS dataset (599 subjects, 6 sites, 9 scanners). The proposed method produces promising segmentation results on the UK Biobank test set which are comparable to previously reported values in the literature, while also performing well on cross-domain test sets, achieving a mean Dice metric of 0.90 for the left ventricle, 0.81 for the myocardium and 0.82 for the right ventricle on the ACDC dataset; and 0.89 for the left ventricle, 0.83 for the myocardium on the BSCMR-AS dataset. The proposed method offers a potential solution to improve CNN-based model generalizability for the cross-scanner and cross-site cardiac MR image segmentation task

    A simple and fast heuristic for protein structure comparison

    Get PDF
    Background Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. Results We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. Conclusion We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results. Software is available for download at http://modo.ugr.es/jrgonzalez/msvns4maxcmo webcite.This work is supported by Projects HeuriCosc TIN2005-08404-C04-01, HeuriCode TIN2005-08404-C04-03, both from the Spanish Ministry of Education and Science. JRG acknowledges financial support from Project TIC2002-04242-C03-02. Authors thank N. Krasnogor and ProCKSi project (BB/C511764/1) for their support
    corecore