1,187 research outputs found

    Laboratory-based and office-based Globorisk scores to predict 10-year risk of cardiovascular diseases among Iranians: results from the Fasa PERSIAN cohort.

    Get PDF
    BACKGROUND: Globorisk is a novel risk prediction model for predicting cardiovascular disease (CVD). Globorisk is a country-specific risk prediction model that determines CVD risk for all countries. This model has two versions; laboratory-based and office-based. This study aimed to determine the agreement between laboratory-based and office-based models in a large sample of the general population. METHODS: Baseline data from the Fasa cohort study was used for the current study. In total, 6810 participants ≥ 40 years without any history of cardiovascular disease or stroke were included in the study. To determine the laboratory-based risk model, factors include age, sex, current smoking status, history of diabetes, systolic blood pressure (SBP), and total cholesterol. To estimate the office-based risk model, factors were age, sex, current smoking status, SBP, and body mass index (BMI). Kappa statistics was used to distinguish the agreement between grouped scores in these two models. Additionally, correlation coefficients and scatter plots were used to determine the linear correlation between the two models. RESULTS: In this study 46.53% of the participants were men. The mean age (SD) of participants was 51.08 (7.88) years. Agreements between the two models were moderate and substantial in all women and all men, respectively. The agreement between the two CVD risk groups was 90.15% (kappa = 0.717) in all men, 92.94% (kappa = 0.571) among men aged  60 years (r = 0.94). Among all women, there was a very strong positive correlation (r = 0.87), and the strong positive correlation remained among  60 years old (r = 0.76). CONCLUSION: The Globorisk office-based model which is easier to use as it does not require blood testing can determine the risk groups in this population. The Globorisk office-based model may be used for CVD risk screening in low-middle income countries where resources are limited

    Life Skills at a Tribal College: A Culturally Relevant Educational Intervention

    Get PDF
    American Indians, Alaska Natives, and Native Hawaiians (AI/AN/NH) experience the lowest rates of college retention and significant barriers to graduation. In addition, AI/AN/NH individuals face health challenges that include higher rates of obesity, overweight, and type 2 diabetes. We designed a culturally relevant life skills curriculum based on family and consumer science standards to promote educational achievement, self-efficacy, and healthful food choices among tribal college students. The Life Skills at a Tribal College course was delivered by tribal college Extension professionals in a family meal–style environment and involved culturally appropriate, traditional ways of learning to promote positive educational and health outcomes

    Characterization of microbulk detectors in argon- and neon-based mixtures

    Full text link
    A recent Micromegas manufacturing technique, so called Microbulk, has been developed, improving the uniformity and stability of this kind of detectors. Excellent energy resolutions have been obtained, reaching values as low as 11% FWHM at 5.9 keV in Ar+5%iC4H10. This detector has other advantages like its flexible structure, low material budget and high radio-purity. Two microbulk detectors with gaps of 50 and 25 um have been characterized in argon- and neon-based mixtures with ethane, isobutane and cyclohexane. The results will be presented and discussed. The gain curves have been fitted to the Rose-Korff gain model and dependences of the electron mean free path and the threshold energy for ionization have been obtained. The possible relation between these two parameters and the energy resolution will be also discussed.Comment: Submitted to the Journal of Instrumentatio

    Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    Full text link
    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 106^{-6} keV1^{-1} cm2^{-2} s1^{-1}, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 107^{-7} keV1^{-1} cm2^{-2} s1^{-1} and show good prospects for the application of this technology in IAXO. Finally, we present some ideas and results for reducing the energy threshold of these detectors below 1 keV, using high-transparent windows, autotrigger electronics and studying the cluster shape at different energies. As a high flux of axion-like-particles is expected in this energy range, a sub-keV threshold detector could enlarge the physics case of axion helioscopes.Comment: Proceedings of 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014

    X-ray detection with Micromegas with background levels below 106^{-6} keV1^{-1}cm2^{-2}s1^{-1}

    Full text link
    Micromegas detectors are an optimum technological choice for the detection of low energy x-rays. The low background techniques applied to these detectors yielded remarkable background reductions over the years, being the CAST experiment beneficiary of these developments. In this document we report on the latest upgrades towards further background reductions and better understanding of the detectors' response. The upgrades encompass the readout electronics, a new detector design and the implementation of a more efficient cosmic muon veto system. Background levels below 106^{-6}keV1^{-1}cm2^{-2}s1^{-1} have been obtained at sea level for the first time, demonstrating the feasibility of the expectations posed by IAXO, the next generation axion helioscope. Some results obtained with a set of measurements conducted in the x-ray beam of the CAST Detector Laboratory will be also presented and discussed

    CAST microbulk micromegas in the Canfranc Underground Laboratory

    Get PDF
    During the last taking data campaigns of the CAST experiment, the micromegas detectors have achieved background levels of 5×106\approx 5 \times 10^{-6}keV1^{-1}cm2^{-2}s1^{-1} between 2 and 9 keV. This performance has been possible thanks to the introduction of the microbulk technology, the implementation of a shielding and the development of discrimination algorithms. It has motivated new studies towards a deeper understanding of CAST detectors background. One of the working lines includes the construction of a replica of the set-up used in CAST by micromegas detectors and its installation in the Canfranc Underground Laboratory. Thanks to the comparison between the performance of the detectors underground and at surface, shielding upgrades, etc, different contributions to the detectors background have been evaluated. In particular, an upper limit <2×107< 2 \times 10^{-7}keV1^{-1}cm2^{-2}s1^{-1} for the intrinsic background of the detector has been obtained. This work means a first evaluation of the potential of the newest micromegas technology in an underground laboratory, the most suitable environment for Rare Event Searches.Comment: 6 pages, 8 figures. To appear in the proceedings of the 2nd International Conference on Technology and Instrumentation for Particle Physics (TIPP 2011

    Micromegas detector developments for MIMAC

    Full text link
    The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 ×\times 10 cm2^2 with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011; corrections on author affiliation

    Low Background Micromegas in CAST

    Get PDF
    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 106^{-6} counts/keV/cm2^2/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 107^{-7} counts/keV/cm2^2/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as the strategies to further reduce the background level. Finally, we will describe the R&D paths to achieve sub-keV energy thresholds, which could broaden the physics case of axion helioscopes.Comment: 6 pages, 3 figures, Large TPC Conference 2014, Pari
    corecore