11 research outputs found

    Inflammatory responses against Gram negative bacteria induced by TLR4 and NLRP12

    No full text

    Placental inflammation in pre-eclampsia by Nod-like receptor protein (NLRP)3 inflammasome activation in trophoblasts

    No full text
    Pre‐eclampsia is associated with increased levels of cholesterol and uric acid and an inflamed placenta expressing danger‐sensing pattern recognition receptors (PRRs). Crystalline cholesterol and uric acid activate the PRR Nod‐like receptor protein (NLRP)3 inflammasome to release interleukin (IL)‐1β and result in vigorous inflammation. We aimed to characterize crystal‐induced NLRP3 activation in placental inflammation and examine its role in pre‐eclampsia. We confirmed that serum total cholesterol and uric acid were elevated in pre‐eclamptic compared to healthy pregnancies and correlated positively to high sensitivity C‐reactive protein (hsCRP) and the pre‐eclampsia marker soluble fms‐like tyrosine kinase‐1 (sFlt‐1). The NLRP3 inflammasome pathway components (NLRP3, caspase‐1, IL‐1β) and priming factors [complement component 5a (C5a) and terminal complement complex (TCC)] were co‐expressed by the syncytiotrophoblast layer which covers the placental surface and interacts with maternal blood. The expression of IL‐1β and TCC was increased significantly and C5a‐positive regions in the syncytiotrophoblast layer appeared more frequent in pre‐eclamptic compared to normal pregnancies. In‐vitro activation of placental explants and trophoblasts confirmed NLRP3 inflammasome pathway functionality by complement‐primed crystal‐induced release of IL‐1β. This study confirms crystal‐induced NLRP3 inflammasome activation located at the syncytiotrophoblast layer as a mechanism of placental inflammation and suggests contribution of enhanced NLRP3 activation to the harmful placental inflammation in pre‐eclampsia

    Cyclodextrin Reduces Cholesterol Crystal-Induced Inflammation by Modulating Complement Activation

    No full text
    Cholesterol crystals (CC) are abundant in atherosclerotic plaques and promote inflammatory responses via the complement system and inflammasome activation. Cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (BCD) is a compound that solubilizes lipophilic substances. Recently we have shown that BCD has an anti-inflammatory effect on CC via suppression of the inflammasome and liver X receptor activation. The putative effects of BCD on CC-induced complement activation remain unknown. In this study, we found that BCD bound to CC and reduced deposition of Igs, pattern recognition molecules, and complement factors on CC in human plasma. Furthermore, BCD decreased complement activation as measured by terminal complement complex and lowered the expression of complement receptors on monocytes in whole blood in response to CC exposure. In line with this, BCD also reduced reactive oxygen species formation caused by CC in whole blood. Furthermore, BCD attenuated the CC-induced proinflammatory cytokine responses (e.g., IL-1ι, MIP-1ι, TNF, IL-6, and IL-8) as well as regulated a range of CC-induced genes in human PBMC. BCD also regulated complement-related genes in human carotid plaques treated ex vivo. Formation of terminal complement complex on other complement-activating structures such as monosodium urate crystals and zymosan was not affected by BCD. These data demonstrate that BCD inhibits CC-induced inflammatory responses, which may be explained by BCD-mediated attenuation of complement activation. Thus, these findings support the potential for using BCD in treatment of atherosclerosis

    Cholesterol crystals and NLRP3 mediated inflammation in the uterine wall decidua in normal and preeclamptic pregnancies

    Get PDF
    Preeclampsia is a hypertensive and inflammatory pregnancy disorder associated with cholesterol accumulation and inflammation at the maternal-fetal interface. Preeclampsia can be complicated with fetal growth restriction (FGR) and shares risk factors and pathophysiological mechanisms with cardiovascular disease. Cholesterol crystal mediated NLRP3 inflammasome activation is central to cardiovascular disease and the pathway has been implicated in placental inflammation in preeclampsia. Direct maternal-fetal interaction occurs both in the uterine wall decidua and at the placental surface and these aligned sites constitute the maternal-fetal interface. This study aimed to investigate cholesterol crystal accumulation and NLRP3 inflammasome expression by maternal and fetal cells in the uterine wall decidua of normal and preeclamptic pregnancies. Pregnant women with normal (n = 43) and preeclamptic pregnancies with (n = 28) and without (n = 19) FGR were included at delivery. Cholesterol crystals were imaged in decidual tissue by both second harmonic generation microscopy and polarization filter reflected light microscopy. Quantitative expression analysis of NLRP3, IL-1β and cell markers was performed by immunohistochemistry and automated image processing. Functional NLRP3 activation was assessed in cultured decidual explants. Cholesterol crystals were identified in decidual tissue, both in the tissue stroma and near uterine vessels. The cholesterol crystals in decidua varied between pregnancies in distribution and cluster size. Decidual expression of the inflammasome components NLRP3 and IL-1β was located to fetal trophoblasts and maternal leukocytes and was strongest in areas of proximity between these cell types. Pathway functionality was confirmed by cholesterol crystal activation of IL-1β in cultured decidual explants. Preeclampsia without FGR was associated with increased trophoblast dependent NLRP3 and IL-1β expression, particularly in the decidual areas of trophoblast and leukocyte proximity. Our findings suggest that decidual accumulation of cholesterol crystals may activate the NLRP3 inflammasome and contribute to decidual inflammation and that this pathway is strengthened in areas with close maternal-fetal interaction in preeclampsia without FGR

    Cholesterol crystals and NLRP3 mediated inflammation in the uterine wall decidua in normal and preeclamptic pregnancies

    No full text
    Preeclampsia is a hypertensive and inflammatory pregnancy disorder associated with cholesterol accumulation and inflammation at the maternal-fetal interface. Preeclampsia can be complicated with fetal growth restriction (FGR) and shares risk factors and pathophysiological mechanisms with cardiovascular disease. Cholesterol crystal mediated NLRP3 inflammasome activation is central to cardiovascular disease and the pathway has been implicated in placental inflammation in preeclampsia. Direct maternal-fetal interaction occurs both in the uterine wall decidua and at the placental surface and these aligned sites constitute the maternal-fetal interface. This study aimed to investigate cholesterol crystal accumulation and NLRP3 inflammasome expression by maternal and fetal cells in the uterine wall decidua of normal and preeclamptic pregnancies. Pregnant women with normal (n = 43) and preeclamptic pregnancies with (n = 28) and without (n = 19) FGR were included at delivery. Cholesterol crystals were imaged in decidual tissue by both second harmonic generation microscopy and polarization filter reflected light microscopy. Quantitative expression analysis of NLRP3, IL-1β and cell markers was performed by immunohistochemistry and automated image processing. Functional NLRP3 activation was assessed in cultured decidual explants. Cholesterol crystals were identified in decidual tissue, both in the tissue stroma and near uterine vessels. The cholesterol crystals in decidua varied between pregnancies in distribution and cluster size. Decidual expression of the inflammasome components NLRP3 and IL-1β was located to fetal trophoblasts and maternal leukocytes and was strongest in areas of proximity between these cell types. Pathway functionality was confirmed by cholesterol crystal activation of IL-1β in cultured decidual explants. Preeclampsia without FGR was associated with increased trophoblast dependent NLRP3 and IL-1β expression, particularly in the decidual areas of trophoblast and leukocyte proximity. Our findings suggest that decidual accumulation of cholesterol crystals may activate the NLRP3 inflammasome and contribute to decidual inflammation and that this pathway is strengthened in areas with close maternal-fetal interaction in preeclampsia without FGR

    The NLRP12 Inflammasome Recognizes Yersinia pestis

    Get PDF
    Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1β, which are generated through caspase-1-activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A, and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1β production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB. These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis
    corecore