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SUMMARY

Yersinia pestis, the causative agent of plague, is able
to suppress production of inflammatory cytokines
IL-18 and IL-1b, which are generated through cas-
pase-1-activating nucleotide-binding domain and
leucine-rich repeat (NLR)-containing inflamma-
somes. Here, we sought to elucidate the role of NLRs
and IL-18 during plague. Lack of IL-18 signaling led
to increased susceptibility to Y. pestis, producing
tetra-acylated lipid A, and an attenuated strain
producing a Y. pseudotuberculosis-like hexa-acyl-
ated lipid A. We found that the NLRP12 inflamma-
some was an important regulator controlling IL-18
and IL-1b production after Y. pestis infection, and
NLRP12-deficient mice were more susceptible to
bacterial challenge. NLRP12 also directed inter-
feron-g production via induction of IL-18, but had
minimal effect on signaling to the transcription factor
NF-kB. These studies reveal a role for NLRP12 in
host resistance against pathogens. Minimizing
NLRP12 inflammasome activation may have been
a central factor in evolution of the high virulence of
Y. pestis.

INTRODUCTION

Inflammasomes are multimolecular complexes consisting of

inactive pro-caspase-1 and members of the nucleotide-binding

domain-leucine-rich repeat (NLR) family of immune system

proteins (Latz, 2010). The assembly of an inflammasome leads

to proteolytic activation of caspase-1, which in turn cleaves

pro-interleukin (IL)-1b and pro-IL-18 into mature forms (Latz,

2010). Active IL-1b and IL-18 are essential members of host

defenses toward various pathogens and may also participate

in sterile inflammatory processes. The NLR family has more

than 20 members; however, many of these proteins have

unknown functions (Martinon et al., 2009), and their relative roles
96 Immunity 37, 96–107, July 27, 2012 ª2012 Elsevier Inc.
in promoting resistance to infection are in many instances

unclear. There is evidence supporting a function in bacterial

recognition for several NLRs. These include NOD1/2 (recog-

nizing peptidoglycan fragments) (Martinon et al., 2009), NLRP1

(sensing anthrax lethal toxin) (Averette et al., 2009), NLRP3

(activated by exposure to many pathogens, bacterial RNA,

toxins, and crystal structures) (Davis et al., 2011; Duewell

et al., 2010; Halle et al., 2008; Hornung et al., 2008; Kanneganti

et al., 2006; Sander et al., 2011), NLRC4 (sensing of Salmonella,

intracellular flagellin and bacterial type III secretion rod proteins)

(Franchi et al., 2006; Miao et al., 2010), and Naip5 (promoting

resistance to Legionella) (Kofoed and Vance, 2011; Molofsky

et al., 2006; Ren et al., 2006). Recent results also suggested

a role for NLRP6 in maintenance of bacterial homeostasis in

the colon and for NLRP7 in the recognition of lipoproteins (Khare

et al., 2012). NLRP12 (also called Nalp12, Monarch-1, and

Pypaf-7) was the first NLR shown in biochemical assays to

interact with the adaptor protein Asc to form an active IL-

1b-maturing inflammasome (Wang et al., 2002). The role of

NLRP12 in innate immunity has remained unclear. Both inflam-

matory and inhibitory functions have been suggested, as has

a role in hypersensitivity (Allen et al., 2012; Arthur et al., 2010;

Lich and Ting, 2007; Lich et al., 2007; Wang et al., 2002; Zaki

et al., 2011). Interestingly, like for NLRP3, mutations in NLRP12

are linked to hereditary inflammatory disease (Jéru et al.,

2008), and mutations may lead to increased Asc speckle forma-

tion and caspase-1 activity (Jéru et al., 2011b). It has been re-

ported that patients carrying NLRP12 mutations associated

with increased inflammasome activation have been successfully

treated with anti-IL-1 therapy, similar to patients containing

mutations in NLRP3 (Hawkins et al., 2003; Jéru et al., 2011a;

Lachmann et al., 2009). No previous studies have addressed

the role of NLRP12 in host resistance to infectious agents.

Evading innate immunity early in infection plays a key role in

virulence of many microorganisms including the plague bacillus

Yersinia pestis (Cornelis, 2000; Perry and Fetherston, 1997;

Stenseth et al., 2008). This pathogen has several means of mini-

mizing immune activation (Lathem et al., 2007; Monack et al.,

1998; Mukherjee et al., 2006; Sodeinde et al., 1992; Zhou

et al., 2005), with the effect that bacterial replication can proceed

with minimal interference by the immune system. As a result,
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plague is often characterized by very high bacterial numbers in

patient sera and organs (Perry and Fetherston, 1997). Major

factors neutralizing host defenses by active means include

a complex type III secretion system (T3SS) (Cornelis, 2002; Perry

and Fetherston, 1997), the plasminogen activator Pla (Lathem

et al., 2007; Sodeinde et al., 1992), and a high-affinity iron acqui-

sition system (Perry and Fetherston, 1997). The Yersinia T3SS

delivers effector proteins, which disrupt signaling within the

host cell to prevent phagocytosis, induce apoptosis, and evade

the immune response (Cornelis, 2002). Many Gram-negative

bacteria, including Y. pseudotuberculosis, a very close ancestor

of Y. pestis, produce a hexa-acylated lipid A and LPS, which has

the potential of strongly triggering innate immunity via Toll-like

receptor 4 (TLR4)-MD-2 signaling (Munford, 2008; Raetz et al.,

2007; Rebeil et al., 2004; Therisod et al., 2002). In contrast,

Y. pestis generates a tetra-acylated lipid A-LPS that poorly

induces TLR4-mediated cellular activation (Kawahara et al.,

2002; Knirel et al., 2005; Montminy et al., 2006; Rebeil et al.,

2006). We have reported that expression of E. coli lpxL in

Y. pestis, which lacks a homolog of this gene, forces the bio-

synthesis of a hexa-acylated LPS (Montminy et al., 2006) and

that this single modification dramatically reduces virulence in

wild-type mice, but not in mice lacking a functional TLR4. This

emphasizes that avoiding activation of innate immunity is

important for Y. pestis virulence. It also provides a model in

which survival is strongly dependent on innate immune

defenses, presenting a unique opportunity for evaluating relative

importance of innate immunity signals in protection against

bacterial infection.

One implication of TLR4 engagement is the induction of the

immature forms of the central proinflammatory cytokines IL-1b

and IL-18. TLR4 signaling can also promote expression of

inflammasome components such as Nlrp3 (Bauernfeind et al.,

2009). This establishes links between TLR4 activation and the

inflammasome pathways. In this study, we have used wild-

type Y. pestis and attenuated strains expressing a strong

TLR4-activating hexa-acylated LPS as a model system to inves-

tigate the involvement of NLRP12 in pathogen recognition and

IL-18 - IL-1b release.

Here, we show that NLRP12 is an inflammasome component

that is central in the recognition of Y. pestis and that IL-18

signaling substantially contributes to resistance against bac-

teria. Compared to wild-type mice, NLRP12-deficient animals

had higher mortality and increased bacterial loads after infec-

tion, correlated with lower amounts of IL-18, IL-1b, and IFN-g.

We propose a role for NLRP12 in the sensing of microbial

pathogens.

RESULTS

IL-18Signaling Is Essential for Resistance to Attenuated
Y. pestis

We have found that all members of the genus Yersinia other

than Y. pestis, and including the very closely related

Y. pseudotuberculosis, contain the lpxL gene (S. Paquette

et al., unpublished data). Absence of lpxL and the resulting

production of a tetra-acylated LPS was proposed to be essential

for Y. pestis virulence (Montminy et al., 2006). To study the

evasion of TLR4 signaling in an evolutionary perspective, we
cloned lpxL from the closely related Y. pseudotuberculosis and

expressed it in Y. pestis, generating Y. pestis-pYtbLpxL, to

determine its effects on virulence. Y. pestis grown at 37�C has

a tetra-acylated lipid A (Figure S1A available online) (Montminy

et al., 2006), whereas Y. pseudotuberculosis and Y. pestis-

pYtbLpxL have a hexa-acylated lipid A (Figure S1B). Mice in-

fected subcutaneously (s.c.) with 500 colony forming units

(CFUs) of highly virulent Y. pestis KIM1001 rapidly succumb to

infection (Figure 1A). All wild-type mice infected with KIM1001-

pYtbLpxL expressing a hexa-acylated Y. pseudotuberculosis-

like lipid A survived (Figure 1A), and the animals were protected

toward challenge with virulent KIM1001 (Table S1). Survival of

mice was strongly TLR4 dependent (Figure 1A). To determine

the pathways responsible for in vivo clearance, we infected

mice from several strains deficient in inflammatory cytokines or

cytokine receptors s.c. with 500 CFUs of KIM1001-pYtbLpxL

(Figure 1B). Interestingly, 100% of the animals lacking IL-18

and IL-18R died, as did the TLR4-deficient mice and 70% of

the IL-1R1-deficient mice. Weaker effects were observed in

animals lacking IFN-abR, TNFR1, or IL-12p40 (Figure 1B). Resis-

tance to infection in IL-1b- and IL-1R1-deficient animals was

reduced to a similar degree, with �30% of animals surviving

(Figure 1C). However, IL-18 was critically important for resis-

tance to infection in this model, given that IL-18 and IL-18R-

deficient mice developed symptoms of bubonic plague and

rapidly succumbed to disease when infected with KIM1001-

pYtbLpxL (Figures 1B and 1D). Because inflammasomes are

responsible for processing of IL-18 and IL-1b into mature forms,

this result indicates that this infection model is well-suited for the

study of inflammasome mechanisms and implications of IL-18

release. Mice deficient in MyD88, an adaptor molecule common

to TLR, IL-1R, and IL-18R signaling pathways, were more

susceptible to wild-type Y. pestis KIM1001 than wild-type

C57Bl/6 mice (Figure S1C) and are also highly susceptible to

strains expressing lpxL (Montminy et al., 2006). Intravenous

(i.v.) infection causes systemic infection even when attenuated

bacterial strains are used; hence the inflammatory capacity in

tissues for various bacterial strains can better be compared

with this route of delivery. We found elevated levels of spleen

IL-1b and IL-18 after i.v. infection with Y. pestis and fully virulent

KIM1001-induced lower cytokine levels as compared to

KIM1001-pYtbLpxL producing the potent LPS (Figures 1E and

1F). A similar release pattern could also be seen in vitro with

bone marrow-derived macrophages (BMDMs) (Figure 1G) after

stimulation with KIM5 (a pgm mutant attenuated strain used for

in vitro experiments) or KIM5-pYtbLpxL. Immunoblot analysis

(Figure 1H) indicated that pro-IL-1b was indeed cleaved

into mature IL-1b after infection with Y. pestis strains, a sign of

inflammasome action. Infection with the Y. pestis-YtbLpxL strain

markedly increased levels of pro- and cleaved IL-1b. These

results indicate that minimizing inflammasome priming may

have been an important implication of lpxL loss during evolution

of Y. pestis from Y. pseudotuberculosis.

NLRP12 Is Involved in Recognition of Y. pestis
We next wanted to determine which NLRs were involved in

resistance to Y. pestis strains and in IL-18 and IL-1b release.

NLRP12 and NLRP3 have both been shown to interact with

Asc in generating an IL-1b-processing inflamammasome
Immunity 37, 96–107, July 27, 2012 ª2012 Elsevier Inc. 97



Figure 1. Infection of Mice with Y. pestis-pYtbLpxL Is Controlled by IL-18

(A) Survival of mice infected s.c. with 500 CFUs of Yersinia pestis KIM1001 (C57Bl/6: n = 8) or KIM1001-pYtbLpxL (C57Bl/6 and Tlr4�/� [TLR4 KO]: n = 10)

bacteria.

(B) Mortality of animals infected s.c. with 500 CFUs of KIM1001-pYtbLpxL (n = 7 for Ifnar�/� [IFNabRKO], 8 for Il12b�/� [IL-12p40 KO], 10 for C57Bl/6, Il1r1�/� [IL-

1R1 KO], Il18r1�/� [IL-18R KO], Il18�/� [IL-18 KO], and TLR4 KO). Statistical differences in TLR4, IL-18, or IL-18R versus IL-1R and other strains: p < 0.002.

Statistical differences in IL-12p40, IL-18, IL-18R, and TLR4 versus C57Bl/6: p < 0.001.

(C and D) Survival of mice deficient in (C) IL-1b (Il1b�/�, IL1b KO) and IL-1R and (D) IL-18 infected s.c. with 500 CFUs of KIM1001-pYtbLpxL (n = 10 of each

genotype).

(E and F) Concentrations of spleen IL-1b and IL-18 from C57BL/6 mice infected i.v. with 500 CFU of KIM1001 or KIM1001-pYtbLpxL for 44 hr.

(G) IL-1b in supernatants from BMDM stimulated with 10 multiplicity of infection (m.o.i.) of KIM5 or KIM5-pYtbLpxL for 6 hr, 50 mg/ml of gentamicin was added to

wells after 3 hr.p.i.; error bars represent the SD.

(H) Immunoblot of IL-1b in the combined lysates and supernatants of BMDMs stimulated with 10 m.o.i. of Y. pestis KIM5, KIM5-pEcLpxL, and KIM5-pYtbLpxL

and 1m.o.i. of Salmonella typhimurium. Both pro-IL-1b (upper band) andmature IL-1b (lower band) are shown. Shown is representative of three to five performed

experiments. *p < 0.05; **p < 0.01; ***p < 0.001. Also see Figure S1 and Table S1.
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(Agostini et al., 2004; Manji et al., 2002; Wang et al., 2002), but

little is known of the role of NLRP12 during infection. We infected

both NLRP3-deficient and NLRP12-deficient mice (Figures 2A

and 2B) s.c. with 500 CFUs of KIM1001-pYtbLpxL and found

that only 20% of NLRP12-deficient mice survived the infection,

whereas �50% of mice lacking NLRP3 survived. This suggests

that NLRP12 plays an important role in host defense against

some bacterial pathogens. In contrast, NLRP12-deficient

mice were resistant to infection with Salmonella typhimurium,
98 Immunity 37, 96–107, July 27, 2012 ª2012 Elsevier Inc.
whereas TLR4-deficient mice all succumbed to the infectious

challenge (Figure 2C). This indicates that NLRP12 deficient

animals are not universallymore sensitive to infections. The func-

tion of NLRP12 is not well understood, but mRNA is detectable in

several organs and immune cells (Figures S2A and S2B),

including macrophages, although prolonged macrophage

maturation led to a decrease in expression (Figure S2C).

NLRP12-deficient mice (Figure S2D) had a normal composition

of cell populations in spleen and bone marrow (Figure S2E).



Figure 2. NLRP12 Is Involved in Host Resis-

tance to Attenuated Y. pestis

(A and B) Survival of C57Bl/6 (circles), (A) Nlrp3�/�

(NLRP3 KO, squares), and (B) Nlrp12�/� (NLRP12

KO, squares) mice infected s.c. with 500s CFU of

KIM1001-pYtbLpxL.

(C) Survival of C57BL/6 (circles), NLRP12 KO

(squares), or TLR4 KO (triangle) mice infected i.p.

with 500 CFUs of S. typhimurium; p < 0.003

(NLRP12 KO or WT versus TLR4 KO). Also see

Figure S2.
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The possible involvement of NLRP12 in maturation of IL-1b and

IL-18 led us to perform in vitro experiments with mouse cells to

study inflammasome components that promote caspase-1

cleavage and IL-1b-IL-18 release after infection with Y. pestis

and modified strains. Neutrophils express more Nlrp12 than

macrophages (Figure S2B), but the role of inflammasomes in

pathogen-induced neutrophil release of IL-1b and IL-18 is not

yet studied in detail for manymicrobes.We found that thioglycol-

late-elicited neutrophil-enriched peritoneal cells released IL-1b

after Y. pestis infection (Figure 3A). When compared to cells

from wild-type mice, the amounts of IL-1b, but not TNF (Fig-

ure S3A) released from the neutrophils lacking NLRP12, were

markedly reduced after stimulation with Y. pestis strains. More-

over, infected neutrophils from the caspase-1-deficient mice

lack IL-1b in the supernatant, suggesting that Y. pestis-induced

neutrophil IL-1b release involves caspase-1 inflammasomes,

although we cannot rule out a role for other neutrophil proteases

(Netea et al., 2010). It is also unclear which role caspase-11 plays

relative to caspase-1 in Y. pestis-induced inflammasome activa-

tion, given that the caspase-1-deficient mice utilized in this study

contain the same truncated and apparently nonfunctional cas-

pase-11 as previously published (Kayagaki et al., 2011). Macro-

phages deficient in NLRP12 or NLRP3 also had a reduced ability

to release both IL-18 and IL-1b after infection with parental

Y. pestis and Y. pestis-pYtbLpxL (Figures 3B and 3C). These

observations are consistent with the survival data (Figure 2),

which indicated that host recognition of Y. pestis involves

NLRP12. Cells deficient in Asc and caspase-1 also had

decreased IL-18 and IL-1b release (Figures 3B and 3C). Thus,

NLRP12 signaling may occur parallel to or in cooperation with

additional inflammasome components because NLRP12 defi-

ciency did not completely block cytokine release. NLRP12

KO macrophages responded normally to alum, S. typhimurium

(Figure 3C), nigericin, and poly(dA:dT) (Figures S3B and S3C),

suggesting that NLRP12 may not participate in NLRP3, AIM2,

or NLRC4 inflammasomes formed in response to those stimuli.

None of the inflammasome proteins had an impact on TNF

release (Figure 3D; Figure S3). Furthermore, NLRP12 deficiency

had little impact on the expression of 31 selected macrophage

genes, including Il1b, in the absence or presence of bacteria

(Figure S3C). Many of those genes are controlled by NF-kB

and/or MAP kinases. In a more detailed study, NF-kB signaling

measured by IKK kinase assay and I-kB degradation was also

largely preserved in NLRP12-deficient cells (Figures S3D and

S3E). Y. pestis pregrown at 26�C naturally expresses a hexa-

acylated LPS (Montminy et al., 2006), and release of IL-1b

in response to infection by 26�C grown bacteria was also

influenced by NLRP12 (Figure S3B). Upon infection of wild-
type and NLRP12 KO BMDMs with the human pathogens

Y. pseudotuberculosis and Y. enterocolitica, ancestors of

Y. pestis (Chain et al., 2004), we observed a reduction in secreted

IL-1b from the cells lacking NLRP12 (Figure 3E), although TNF

release was normal (Figure S3F). By using KIM6, a derivative of

KIM5 that lacks the pCD1 virulence plasmid containing genes

for the T3SS (Perry and Fetherston, 1997), we found that the

secretion system was necessary for stimulating IL-1b release,

even in the presence of a highly stimulatory LPS as found in

KIM6-pYtbLpxL (Figure 3F). YopJ may participate in inflamma-

some activation (Zheng et al., 2011), and the deletion of YopJ

or the T3SS translocon protein YopB reduced IL-1b release (Fig-

ure 3G). Experiments performed using a strain with the expres-

sion of lpxL on a YopJ mutant background suggested that

YopJ is a key player controlling IL-1b release, even in the

presence of a stimulatory LPS (Figure 3H), although other

T3SS-dependent factors may also regulate IL-1b (Brodsky

et al., 2010). The data suggest that the ligand(s) responsible for

NLRP12 activation are dependent on the Yersinia T3SS. TLR4

plays a critical role in the IL-1b and IL-18 production after infec-

tion of the mousemacrophages (Figure 3I; Figure S3G), although

the relative importance of mouse versus human TLR4-MD-2 in

inducing Y. pestis responses may differ. Rodent cells have

higher ability to recognize hypoacylated lipid A (Lien et al.,

2000; Montminy et al., 2006). This might be influenced by a

shallow positioning of the hypoacylated lipid A in mouse MD-2

compared to human MD-2, and the enabling of enhanced ionic

interactions between hypoacylated lipid A and mouse TLR4,

facilitating receptor cluster dimerization and signaling (Meng

et al., 2010). Our results indicate a role for both TLR4 and

NLRP12 in the proinflammatory macrophage response against

Y. pestis strains.

NLRP12 Is an Inflammasome Component
Upregulation of NLRP3 has been suggested to positively affect

the activity of the NLRP3 inflammasome (Bauernfeind et al.,

2009). We therefore studied expression of Nlrp12 and Nlrp3

(Figures 4A and 4B) after infection of macrophages with KIM5

or KIM5-pYtbLpxL. Expression of Nlrp12 in BMDM was mark-

edly increased after infection with Y. pestis strains and this

may boost host responses to an infection. Treatment with LPS

alone induced upregulation of Nlrp12 gene expression (Fig-

ure S4A). Furthermore, Y. pestis-induced formation of cleaved

and active caspase-1, as measured by an assay showing

binding of active caspase-1 to a fluorescent substrate, was

also impaired in NLRP12-deficient cells, providing evidence for

NLRP12-dependent inflammasome function (Figures 4C and

4D). Caspase-1 cleavage measured by this assay is also
Immunity 37, 96–107, July 27, 2012 ª2012 Elsevier Inc. 99



Figure 3. NLRP12 Mediates Y. pestis-Induced Release IL-1b and IL-18

(A) IL-1b released from neutrophil-enriched peritoneal cells from C57BL/6 (black bars), NLRP12 KO (gray bars), and Casp1�/� (Caspase-1 KO, white bars) mice.

(B–I) IL-18 (B), IL-1b (C and E–I) and TNF (D and G) released from C57BL/6, NLRP12 KO, NLRP3 KO, ASC KO, and caspase-1 KO BMDM (B–D); C57BL/6

and NLRP12 KO BMDM (E); C57BL/6 BMDM (F and G); or C57BL/6 and TLR4 KO BMDMs (I). Infection with Yersinia strains occurred for 6 hr, with an addition of

50 mg/ml gentamicin to limit bacterial growth after 3 hr. Yersinia strains were added at 10 m.o.i., S. typhimurium at 1 m.o.i. Alum (130 mg/ml) stimulations (C and I)

lasted 6 hr after priming for 3 hr with 10 ng/ml KIM5-YtbLpxL LPS. Shown are mean for triplicate cultures (with SD) in representative experiments out of three

to ten performed. *p < 0.05; **p < 0.01; ***p < 0.001. Statistical comparisons are between wild-type cells and multiple mutant cells (A–E and I) or between

unstimulated and multiple bacterial strains (F). Also see Figure S3.
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decreased in spleen macrophages or neutrophils from NLRP12

KO mice 24 hr after infection with KIM1001 or KIM1001-

pYtbLpxL (Figures 4E and 4F). Il1b gene expression was similar

in infected wild-type cells and NLRP12 KO cells infected with

Y. pestis (Figure 4G; Figure S3D). The macrophages infected

in vitro showed a reduction in caspase-1 and IL-1b processing

by immunoblotting (Figure 4H), also cells infected at a higher

m.o.i. (Figure S4B). Thus, several lines of evidence support the

hypothesis that NLRP12 is a component of inflammasomes

formed after Y. pestis infection. Macrophage cell death induced

by Y. pestis has been reported to be caspase-1 independent (Lilo

et al., 2008). We confirmed those data (not shown), and in line
100 Immunity 37, 96–107, July 27, 2012 ª2012 Elsevier Inc.
with this observation, NLRP12-deficient cells did not show an

altered cell death in response to Y. pestis infection (Figure S4C).

Cell deathmay be induced by othermechanisms than pyroptosis

in macrophages infected with Y. pestis.

NLRP12 and IL-18 Mediate Host Resistance
to Y. pestis Infection
As shown in Figures 1 and 2, NLRP12 knockout (KO) and IL-18

KO mice are more susceptible than wild-type mice to infection

with Y. pestis-pYtbLpxL. To monitor changes in IL-18 and IL-

1b in tissues during systemic disease, we subjected WT and

NLRP12 mice to intravenous (i.v.) infection with fully virulent or



Figure 4. NLRP12 Is Necessary for Optimal Maturation of IL-1b and Caspase-1 after Infection with Y. pestis

(A, B, and G) Q-PCR of (A) Nlrp12, (B) Nlrp3, or (G) Il1b from BMDMs infected with 10 m.o.i. of Y. pestis KIM5 or KIM5-pYtbLpxL for (G) 4 hr or (A and B) 6 hr, with

gentamicin addition after 3 hr. Error bars represent the SD.

(C–F) FACS histograms (C and E) showing active caspase-1 after FLICA reagent staining with corresponding (D and F) percent positive cells of (C and D) bone

marrow cells after 6 hr of challenge with 10 m.o.i. of Y. pestis strains (gentamicin added after 3 hr) or (E and F) Ly6G- or F4/80-positive splenocytes from mice

infected with 500 CFUs of KIM1001 or KIM1001-pYtbLpxL for 24 hr. Values from unstimulated cells are subtracted in (D). LPS primed cells treated with nigericin

(10 mM) served as a control (C and D). Error bars in (D) and (F) represent the SD.

(H) Immunoblot for caspase-1 p10 or IL-1b p17 in supernatant or cell lysate from BMDMs exposed for 10 hr to poly(dA:dT) (LPS primed as in Figure 3), KIM5, or

KIM5-pYtbLpxL. Shown is a representative of two (E–G) or three to five (A–D, H, and I) experiments. *p < 0.05; **p < 0.01; ***p < 0.001. Also see Figure S4.
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attenuated Y. pestis (KIM1001 or KIM1001-pYtbLpxL). At 44 hr

after infection with KIM1001, IL-18 cytokine amounts were

considerably lower in the NLRP12 KO mice, expressed as both

cytokine normalized to the spleen bacterial load in each partic-
ular animal (Figure 5A) or simply as cytokine concentration in

homogenate (Figure S5A). A decrease of IL-18 and IL-1b in the

spleen (Figures 5B and 5C) and serum (Figures 5D and 5E)

was also observed after KIM1001-pYtbLpxL infection in the
Immunity 37, 96–107, July 27, 2012 ª2012 Elsevier Inc. 101



Figure 5. NLRP12 and IL-18 Control Infection with Y. pestis In Vivo

(A) IL-18 in serum (ng/ml) of C57Bl/6 orNLRP12KOmice infected i.v.with 500CFUY. pestisKIM1001 for 44 hr, normalizedbybacterial loads (for eachanimal); n = 5.

(B–D) IL-18 or IL-1b in (B and C) spleen or (D) serum of WT or NLRP12 KOmice infected i.v. with 500 CFU KIM1001-pYtbLpxL for 44 hr. In (B) and (C), uninfected

mice: n = 3; infected animals: n = 8. In (D), uninfected mice: n = 4; infected mice: n = 5.

(E) Spleen CFUs of mice infected i.v. with either KIM1001 or KIM1001-pYtbLpxL (n = 5). Horizontal lines indicate mean values.

(F) Histology of fixed H&E stained liver sections from (top) WT, (middle) NLRP12 KO, or (bottom) IL-18R KO mice infected i.v. with (left) KIM1001 or (right)

KIM1001-pYtbLpxL for 44 hr. Asterisks represent bacterial clusters; arrows represent foci of inflammatory cells, primarily neutrophils.

(G) Survival of C57Bl/6 (n = 10), IL-18 KO, and NLRP12 KO (n = 8) mice with 10 CFU s.c. of KIM1001.

(H and I) Spleen CFU (H) or spleen IL-1b (I) of C57Bl/6 and NLRP3 KOmice infected for 44 hr with 500 CFU i.v. of KIM1001-pYtbLpxL. Shown is a representative

of three performed experiments. *p < 0.05; **p < 0.001. Also see Figure S5.
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NLRP12 KO mice as compared to wild-type mice. Experiments

with IL-1R KO, IL-1b KO, and IL-18R KO mice suggested that

IL-18 signaling had the greatest impact on resistance to

Y. pestis-pYtbLpxL, given that 100% of IL-18 and IL-18R KO

animals died after infection (Figures 1B and 1D). IL-18R KO

mice had reduced IL-18 and IL-1b in the spleens compared to

WT mice after infection with KIM1001-pYtbLpxL (Figure S5B),

suggesting a positive feedback loop via IL-18R for IL-1b and

IL-18 production.

A reduction of several orders of magnitude in spleen bacterial

load was seen when mice were infected i.v. with KIM1001-

pYtbLpxL compared to wild-type KIM1001 (Figure 5E), indi-

cating beneficial host responses induced by the presence of

the hexa-acylated LPS. These differences in systemic bacterial

load between the two bacterial strains were absent in mice lack-

ing NLRP12 or IL-18R. NLRP12-deficient and IL-18R-deficient

mice also had increased bacterial loads compared to wild-type

mice when infected with the virulent Y. pestis KIM1001 (Fig-

ure 5E, p = 0.01, WT versus Nlrp12�/�; p < 0.001, WT versus

Il18r1�/�). This is important in that it shows that NLRP12 and

IL-18R participate in host resistance in vivo toward both virulent

and attenuated strains of Y. pestis. Thus, it appears that Y. pestis

has an inherent ability to activate NLRP12-dependent recogni-

tion and that the potent LPS found in strains expressing LpxL

increases the formation of proforms and subsequently mature

forms of inflammasome-controlled cytokines such as IL-1b

(Figures 1H and 4C). Livers from animals infected with wild-

type Y. pestis have large extracellular clusters of bacteria

(Figure 5F, left panels, marked with an asterisk) and remarkably

few signs of inflammation, probably reflecting active suppres-

sion of immunity combined with stealth via limited initiation of

TLR4 signaling. Livers from animals infected with Y. pestis-

pYtbLpxL display foci consisting of inflammatory cells (Figure 5F,

upper right, indicated by arrows) and absence of visible bacterial

masses, suggesting that recruitment of phagocytes limits

bacterial growth (Montminy et al., 2006). Livers from NLRP12

KO mice infected with KIM1001-pYtbLpxL had recruitment of

inflammatory cells (Figure 5F, arrows). Such masses of inflam-

matory cells typically contain large number of neutrophils

and some mononuclear cells (Montminy et al., 2006), and a

calculation of number of recruited cells showed no significant

difference between infected wild-type versus NLRP12-deficient

livers (Figure S5C). However, this cell recruitment did not corre-

late with suppression of bacterial growth, given that bacterial

masses were visible (Figure 5F). These results suggest that

NLRP12may not play amajor role in the attraction of phagocytes

to infected sites in the liver, but is central to the effective antibac-

terial actions they perform. Few if any inflammatory cells were

visible in livers of IL-18R-deficient mice (Figure 5F), indicating

failures of both cell recruitment and antibacterial defenses.

Taken together, the results suggest that NLRP12 and IL-18

contribute to host resistance against Y. pestis and Y. pestis-

pYtbLpxL. We also found that NLRP12 KO mice infected with

KIM1001-pYtbLpxL had reduced amounts of TNF and the

chemokine CXCL12 compared to C57Bl/6 mice (Figures S5D–

S5F), possibly secondary effects of reduced IL-1b and IL-18

release, given that primary cells lacking NLRP12 did not

display decreased TNF release in culture (Figure 2). In contrast,

NLRP12-deficient mice injected with an alum-LPS mixture did
not show decreased serum IL-1b, IL-18, TNF-a, and CXCL12

(Figure S5G). Furthermore, we found similar recruitment of

neutrophils to the peritoneum of wild-type mice or NLRP12-

deficient mice injected intraperitoneally (i.p.) with sterile

thioglycollate (Figure S5H). Movement of neutrophils (Figure 5F;

Figure S5C) and DCs (Figure S5I) during infection of NLRP12-

deficient mice appears to be preserved. Differences in survival

between NLRP12-deficient or IL-18-deficient mice and wild-

type mice after s.c. infection with only 10 CFUs of fully virulent

KIM1001 were not significant (Figure 5G). This result is of uncer-

tain importance because the very low LD50 of Y. pestis by s.c.

infection (less than 10 CFUs) makes it difficult to demonstrate

reductions in host resistance impacting survival without the

use of very large numbers of animals. Tissue bacterial loads

(Figure 5E) appear to be more sensitive assays for analyzing

host resistance to Y. pestis.

NLRP3 has also been proposed as an inflammasome com-

ponent recognizing Y. pestis (Zheng et al., 2011) (Figures 2 and

3). NLRP3-deficient animals also were less resistant to infection

by KIM1001-pYtbLpxL, in that they displayed increased bacte-

rial loads in the spleen (Figure 5H) that correlated with reduced

spleen cytokines (Figure 5I). In summation, NLRP12 and

NLRP3 both contribute to the host resistance toward Y. pestis

strains.

NLRP12 and IL-18 Signaling Induce IFN-g that
Limits Infection
IL-18 is a known inducer of IFN-g (Okamura et al., 1995), a key

protein in many host responses to pathogens. This suggests

that signaling via NLRP12 and the IL-18R, resulting in the release

of IFN-g, could mediate resistance to Y. pestis-pYtbLpxL. Mice

lacking both IFN-abR and IFN-gR (dKO) were infected with

KIM1001-pYtbLpxL s.c., and we found that all the dKO animals

succumbed to the infection (Figure 6A). This phenomenon was

largely attributed to IFN-gR signaling, given that only a few

mice lacking IFN-abR died upon infection, whereas almost all

mice lacking IFN-gR succumbed (Figure 6B). No differences in

IFN-g concentrations were observed between spleens of unin-

fectedWT, NLRP12-deficient, and IL18R-deficient mice (Figures

6C and 6D). However, the IFN-g concentrations in spleens from

KIM1001-pYtbLpxL-infected NLRP12-deficient mice compared

to wild-type mice were drastically reduced (Figure 6C), as was

also true for the mice lacking IL-18R (Figure 6D). Thus, we

propose a cascade of signals from NLRP12 to IL-18 maturation

that in turn mediates IFN-g release after infection with Y. pestis

strains.

DISCUSSION

Wepropose that recognition ofY. pestis expressing a stimulatory

LPS by TLR4 leads to upregulation of NLRP12 and proinflam-

matory cytokines such as IL-18 and IL-1b. NLRP12 then recog-

nizes a ligand produced upon Y. pestis infection and assembles

into an inflammasome that processes IL-18 and IL-1b. Although

the precise nature of the true NLRP12 ligand is unknown,

and it may be a host or bacterial protein, the generation of

the ligand appears to require the virulence-associated T3SS

of Yersinia. Models for activation may include possibilities that

cells sense membrane damage associated with the T3SS,
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Figure 6. NLRP12 Induces IFN-g via IL-18 Signaling

(A and B) Survival of mice: in (A), C57Bl/6: n = 10 and Ifnar1�/� 3 Ifngr1�/�

(IFNabR3 IFN-gR DKO; triangles): n = 8, and in (B), C57Bl/6 (squares): n = 10,

IFNabR KO: n = 8, and IFN-gR KO: n = 7, infected s.c. with 500 CFUs of

KIM1001-pYtbLpxL.

(C and D) IFN-g in spleen homogenates from C57BL/6 and NLRP12 KO mice

infected i.v. with 500 CFU of KIM1001-pYtbLpxL. Uninfected mice: n = 3; in-

fected mice: n = 8 (C) and n = 5 (D). Samples were harvested 46 hr after

infection. Horizontal lines indicate median values. Experiments shown are

representative out of three performed. *p < 0.05; **p < 0.001.
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secreted effectors or other molecules channeled by the T3SS,

and modified host proteins. NLRP3 also contributes to IL-18-

IL-1b release. IL-18 seems to be more critical than IL-1b and

plays a key role in induction of IFN-g.

We show that NLRP12 is an inflammasome component

recognizing Y. pestis and contributes to in vivo resistance to

infection with Y. pestis strains. To our knowledge, this is the

first demonstration of a clear role for NLRP12 in resistance to

infection. Our data suggest an inflammasome role for NLRP12

in pathogen recognition and that the NLRP12-IL-18-IFN-g axis

is effective in limiting infection with Y. pestis-pYtbLpxL. We

also show that the expression of Y. pseudotuberculosis LpxL

in Y. pestis increases TLR4-dependent release of IL-18 and

IL-1b. This increase correlates with increased resistance to the

modified pathogen. In fact, the results indicate that a major

consequence of producing LPS with low TLR4-activating poten-

tial could be lack of priming necessary for effective synthesis

of active IL-1b and IL-18. Therefore, Y. pestis is able to utilize

inflammasome-activating components like the T3SS to

neutralize the immune response without an effective activation

of an inflammatory response. This phenomenon may have

played a role in evolution of high virulence in Y. pestis.

These findings support the view that inflammasomes, the

cellular protein complexes cleaving IL-18 and IL-1b into mature

forms, are fundamental components of the host response to

many pathogens. Indeed, several viral, bacterial and fungal

microbes have strongly increased ability to induce disease in

the absence of IL-1b, IL-18 and inflammasome components

(Broz et al., 2010; Davis et al., 2011; Hise et al., 2009; Lamkanfi

and Dixit, 2009; Rathinam et al., 2010). In spite of this, only
104 Immunity 37, 96–107, July 27, 2012 ª2012 Elsevier Inc.
a fewmammalian NLRs out of a family of more than 20 members

have currently been shown to directly participate in host

defenses. Here, we show that NLRP12 participates in host

responses to wild-type Y. pestis and modified Y. pestis strains

expressing a potent LPS, although the factor(s) in Y. pestis

responsible for directly activating the NLRP12 inflammasome

are still unknown.

NLRP12 may also be involved in resisting infections caused

by other human pathogens. It is unclear how NLRP12 may

interact with other inflammasome components. NLRP12 defi-

ciency did not cause a complete reduction in ability to release

IL-18 and IL-1b after exposure to Y. pestis and Y. pestis-

pYtbLpxL infection. Also, the increased mortality observed in

NLRP12-deficient mice did not appear as great as observed in

IL-18-deficient animals, and NLRP3 also plays a role in host

defenses. Redundancy between NLRs may occur, and other

NLRs may also participate in optimal responses to infection.

This may support the idea that NLRs work together for optimal

protection of the host (Broz et al., 2010). The generation of

animals with combined deficiencies in NLRP12 and other NLRs

may clarify how NLRP12 functions in cooperation with other

signaling components. NF-kB signaling after bacterial challenge

appeared normal in NLRP12-deficient cells.

IL-18, IL-1b, and IFN-g are all cytokines active at the interface

between innate and adaptive immunity. We have found that

Y. pestis strains generating a hexa-acylated LPS could function

as effective live vaccines (Montminy et al., 2006). It would be of

interest to investigate the role of NLRP12 in promoting the devel-

opment of adaptive immunity and protection after vaccination

with both live and subunit + adjuvant vaccines.

The emerging role of inflammasomes as key players in host

defenses during many infections makes them desirable targets

for therapeutic intervention and drug development. We note

that alum, one of the first components known to activate

specific inflammasomes, already is in widespread use as one

of the few vaccine adjuvants licensed for human use. However,

a delicate balance between pathological effects and enhanced

host defenses arising from inflammasome-stimulating treat-

ments will be necessary. Mutations in NLRs are linked to

inflammatory diseases (Hawkins et al., 2003; Jéru et al.,

2011a), and anti-IL-1 treatment does in fact reduce symptoms

in many such patients. More knowledge on the role of NLRs in

inflammation and homeostasis is needed in order to fine-tune

future NLR-based therapies.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Growth Conditions

Y. pestis KIM is originally a clinical isolate from a Kurdistan Iranman (Brubaker,

1970; Perry and Fetherston, 1997). Y. pestis strains KIM5, KIM5-pEcLpxL

(containing E. coli lpxL, earlier called pLpxL) and KIM1001 were as reported

(Montminy et al., 2006). Y. pseudotuberculosis IP2666 (containing a comple-

mentation of PhoP/PhoQ deficiency) and Y. enterocolitica 8081 were provided

by J. Mecsas. Strains were grown in tryptose-beef extract (TB) broth with

2.5 mM CaCl2 all by shaking at 37�C. lpxL of Y. pseudotuberculosis IP2666

including 480 basepairs upstream and 266 basepairs downstream from

coding region was cloned with Pfu Ultra (Stratagene) and was ligated into

the BamHI and SalI sites of pBR322, creating pSP::YtbLpxL (or ‘‘pYtbLpxL’’).

The resulting plasmid was electroproated into Y. pestis KIM5 (Goguen et al.,

1984) or Y. pestis KIM1001 (Sodeinde et al., 1992), and bacteria were selected

by growth on TB agar supplemented with 2.5 mM CaCl2 in the presence of
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100 mg/ml of ampicillin. All strains containing plasmids above remained tetra-

cycline sensitive. KIM1001 (pPCP1+, pCD1+, and pMT1+) is highly virulent

(Perry and Fetherston, 1997), whereas KIM5 bears the chromosomal deletion

‘‘Dpgm,’’ which substantially attenuates virulence. The pgm locus contains no

genes thought to affect LPS biosynthesis. KIM6 is a KIM5 derivative lacking the

T3SS-containing pCD1 virulence plasmid. KIM5-DYopB was provided by

G. Plano (Torruellas et al., 2005). For the generation of KIM5-DYopJ, the

following method was used: An in-frame deletion removing codons 4–287

was created via allelic exchange. PCR products made with primer sets A

(50-ATAGAGCTCCACTACTGATTCAACTTGGACG-30), B (50-50-TCCGATCATT

TATTTATCCTTATTCA-30) and C (50-TGAATAAGGATAAATAAATGATCGGAT

AATGTATTTTGGAAATCTTGCT-30), D (50-GGGTCTAGACTGATGTCGTTTATT

TCTGGGTAT-30), respectfully, were used to make a fused product by overlap

PCR using primers A andD (Horton et al., 1989). This product was cloned in the

allelic exchange vector pRE107 (Edwards et al., 1998) in E.coli K12 strain

B2155 and transferred to Y. pestis by conjugation; recombinants were

selected on TBmedium containing 100 mg/ml ampicillin but no diaminopimelic

acid. After counter selection with 5% sucrose, deletionmutants were identified

by PCR. For in vitro infections, bacteria were grown overnight at 37�C in TB

broth with or without ampicillin, diluted 1:4 in fresh media, and cultured for

threemore hours at 37�C, thenwashed three timeswith PBS and resuspended

in DMEM or RPMI. S. enterica serovar typhimurium strain SL1344 was

provided by M. O’Riordan and strain M525P by C. Bryant.

Cell Stimulations

Mouse BMDMs were prepared by maturing fresh bone marrow cells for 5–

7days in thepresenceofM-CSFcontainingsupernatant fromL929cells.Mouse

neutrophils were enriched by injecting 1 ml of thioglycolate i.p., peritoneal cells

(typically >80%Ly6G-positive cells; Nilsen et al., 2004)were harvested4hr later

after flushing with RPMI. Mouse BMDMs were plated at 23 105 per well in 96-

well plates for ELISA or 2 3 106 per well in 12-well plates for immunoblotting.

Stimulation was for 6 hr and supernatants were collected for cytokine analysis.

Three hours after bacterial infections, 50 mg/ml of gentamycin was added.

Alum was from Pierce; nigericin and poly(dA:dT) was from Sigma. IL-1b p17

and Caspase-1 p10 immunoblots were conducted mainly as described (Hor-

nung et al., 2008) with antibodies from Santa Cruz Biotechnology (caspase-1

p10) and R&D (IL-1 b). The antibody against b-actin was from Sigma. Q-PCR

forNlrp12 andNlrp3 in resting or infected BMDMs or magnetic bead (StemCell

Technologies)-isolated neutrophils was performed with the RNeasy Mini Kit

(QIAGEN) and the iScript cDNA Synthesis Kit (BioRad). PCR was performed

on transcribed cDNA or mouse tissue cDNA (Clontech) with primers for

detection of mouse Nlpr12 (50-TGCAAGCTTCGAGTCCTGT-30, 50-CCTGG
TCGGCTTCATTCTG-30), Nlrp3 (50-AACCAATGCGAGATCCTGAC-30, 50-AT
GCTGCTTCGACATCTCCT-30), or Il1b (50-GCCCATCCTCTGTGACTCAT-30,
50-AGGCCACAGGTATTTTGTCG-30) with SYBR green (BioRad) in accordance

with themanufacturer’s instructions. ELISA kits for IL-1b, TNF-a, IL-8, CXCL12,

IFN-g (R&D), and IL-18 (MBL) were used for cytokine detection. Reagents for

FACS detection of active and cleaved caspase-1 by FLICA-FITC substrate

were from Immunochemistry Technologies.

Mice

All experiments involving animals were approved by the Institutional Animal

Care and Use Committee. ASC (Pycard�/�), NLRP3 (Nlrp3�/�), and NLRP12-

deficient (Nlrp12�/�) mice were generated by Millennium Pharmaceuticals

and were backcrossed 8–11 generations to C57BL/6 background. Mice

deficient in TLR4 (TLR4�/�) and MyD88 (Myd88�/�) were from S. Akira, and

mice lacking caspase-1 (Casp1�/�) were from M. Starnbach. C57BL/6 mice

and mice deficient in IL-1R1 (Il1r1�/�), IL-18R (Il18r1�/�), IL-18 (Il18�/�),
TNFR1 (Tnfr1�/�), IL-12p40 (Il12b�/�), and IFN-gR (Ifngr1�/�) were all from

Jackson Laboratories. J. Sprent (The Scripps Research Institute) provided

the IFN-abR1 (Ifnar1�/�) and IFN-gR1 3 IFN-abR1 doubly deficient mice. IL-

1b (Il1b�/�)-deficient mice (Horai et al., 1998) were provided by Y. Iwakura.

Wild-type (from Jackson Laboratories or bred at UMass) and knockout mice

were infected s.c. in the nape of the neck with Y. pestis and their survival

was monitored twice a day for 30 days. Mice were infected with 1000 CFUs

of S. typhimuriumM525P i.p. and survival was monitored as described above.

For cytokine and CFU analysis, mice were infected either s.c. or i.v. and sacri-

ficed at the indicated time points. Serum was generated by centrifugation in
microtainer tubes (BD), and spleens were homogenized in 0.5 ml PBS with

a closed system Miltenyi gentleMACS dissociator and c-tubes to preserve

intact cells; subsequently cells/debris were removed by centrifugation.

Samples for cytokine analysis were subjected to protease inhibitor (Roche)

treatment. Cytokine amounts normalized by bacterial loads were calculated

by dividing IL-18 concentrations (ng/ml) by the bacterial load (CFUs 3 108)

for each animal. Hematoxylin and eosin (H&E) staining and microscopy were

performed as published (Montminy et al., 2006).

In Vivo Caspase-1 Cleavage Analysis

Mice were infected with 500 CFUs of Y. pestis i.p. After 24 hr, spleens were

harvested and homogenized and cell suspensions were stained with cas-

pase-1 FLICA reagent.

Statistical Analysis

In vitro cytokine release was analyzed by two-way ANOVA with a Bonferroni

post-test. Differences in spleen and serum cytokine concentrations were

analyzed by the unpaired t test. Differences in survival were studied with

Kaplan-Meyer analysis and the logrank test. Differences in spleen CFUs or

cytokine/CFU ratio values between genotypes of mice were evaluated with

the Mann-Whitney test or in more complex comparisons involving multiple

mouse genotypes, with a generalized linear regression model of cubic trans-

formed log CFU values (95% confidence interval), to meet normality assump-

tions. Values of p < 0.05 were considered significant.
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