10 research outputs found

    Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein

    Get PDF
    Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1

    Redox regulation of chloroplastic G6PDH activity by thioredoxin occurs through structural changes modifying substrate accessibility and cofactor binding

    No full text
    In chloroplasts, redox regulation of enzyme activities by TRXs (thioredoxins) allows the co-ordination of light/dark metabolisms such as the reductive (so-called Calvin-Benson) pathway and the OPPP (oxidative pentose phosphate pathway). Although the molecular mechanisms underlying the redox regulation of several TRX-regulated enzymes have been investigated in detail, only partial information was available for plastidial G6PDH (glucose-6-phosphate dehydrogenase) catalysing the first and rate-limiting step of the OPPP. In the present study, we investigated changes in catalytic and structural properties undergone by G6PDH1 from Arabidopsis thaliana upon treatment with TRX f1, the most efficient regulator of the enzyme that did not show a stable interaction with its target. We found that the formation of the regulatory disulfide bridge that leads to activation of the enzyme allows better substrate accessibility to the active site and strongly modifies the cofactor-binding properties. Structural modelling and data from biochemical and biophysical studies of site-directed mutant proteins support a mechanism in which the positioning/function of the highly conserved Arg(131) in the cofactor-binding site can be directly influenced by the redox state of the adjacent regulatory disulfide bridge. These findings constitute another example of modifications to catalytic properties of a chloroplastic enzyme upon redox regulation, but by a mechanism unique to G6PDH

    Bio-inspired hybrid fluorescent ligands for the FK1 domain of FKBP52

    No full text
    Publisher: American Chemical SocietyABSTRACT: The protein FKBP52 is a steroid hormone receptor co-activator likely involved in neurodegenerative disease. A series of small, water-soluble, bioinspired, pseudopeptidic fluorescent ligands for the FK1 domain of this protein are described. The design is such that engulfing of the ligand in the pocket of this domain is accompanied by hydrogen-bonding of the dansyl chromophore which functions as both an integral part of the ligand and a fluorescent reporter. Binding is concomitant with a significant wavelength shift and an enhancement of the ligand fluorescence signal. Excitation of FK1 domain native tryptophan residues in the presence of bound ligand results in Förster Resonance Energy Transfer. Variation of key ligand residues within the short sequence was undertaken and the interaction of the resulting library with the protein was measured by techniques including isothermal calorimetry analysis, fluorescence and FRET quenching and a range of Kd’s was determined. Co-crystallization of a protein ligand complex at 2.30 Å resolution provided detailed information at the atomic scale while also providing insight into native substrate binding

    The Arp1/11 minifilament of dynactin primes the endosomal Arp2/3 complex

    No full text
    Dendritic actin networks develop from a first actin filament through branching by the Arp2/3 complex. At the surface of endosomes, the WASH complex activates the Arp2/3 complex and interacts with the capping protein for unclear reasons. Here, we show that the WASH complex interacts with dynactin and uncaps it through its FAM21 subunit. In vitro, the uncapped Arp1/11 minifilament elongates an actin filament, which then primes the WASH-induced Arp2/3 branching reaction. In dynactin-depleted cells or in cells where the WASH complex is reconstituted with a FAM21 mutant that cannot uncap dynactin, formation of branched actin at the endosomal surface is impaired. Our results reveal the importance of the WASH complex in coordinating two complexes containing actin-related proteins

    Fitness costs restrict niche expansion by generalist niche-constructing pathogens.

    No full text
    International audienceWe investigated the molecular and ecological mechanisms involved in niche expansion, or generalism, versus specialization in sympatric plant pathogens. Nopaline-type and octopine-type Agrobacterium tumefaciens engineer distinct niches in their plant hosts that provide different nutrients: nopaline or octopine, respectively. Previous studies revealed that nopaline-type pathogens may expand their niche to also assimilate octopine in the presence of nopaline, but consequences of this phenomenon on pathogen dynamics in planta were not known. Here, we provided molecular insight into how the transport protein NocT can bind octopine as well as nopaline, contributing to niche expansion. We further showed that despite the ability for niche expansion, nopaline-type pathogens had no competitive advantage over octopine-type pathogens in co-infected plants. We also demonstrated that a single nucleotide polymorphism in the nocR gene was sufficient to allow octopine assimilation by nopaline-type strains even in absence of nopaline. The evolved nocR bacteria had higher fitness than their ancestor in octopine-rich transgenic plants but lower fitness in tumors induced by octopine-type pathogens. Overall, this work elucidates the specialization of A. tumefaciens to particular opine niches and explains why generalists do not always spread despite the advantage associated with broader nutritional niches.The ISME Journal advance online publication, 1 November 2016; doi:10.1038/ismej.2016.137
    corecore