530 research outputs found

    Limit quantum efficiency for violation of Clauser-Horne Inequality for qutrits

    Full text link
    In this paper we present the results of numerical calculations about the minimal value of detection efficiency for violating the Clauser - Horne inequality for qutrits. Our results show how the use of non-maximally entangled states largely improves this limit respect to maximally entangled ones. A stronger resistance to noise is also found.Comment: Phys. Rev. A in pres

    Price Competition, Fluctuations, and Welfare Guarantees

    Full text link
    In various markets where sellers compete in price, price oscillations are observed rather than convergence to equilibrium. Such fluctuations have been empirically observed in the retail market for gasoline, in airline pricing and in the online sale of consumer goods. Motivated by this, we study a model of price competition in which an equilibrium rarely exists. We seek to analyze the welfare, despite the nonexistence of an equilibrium, and present welfare guarantees as a function of the market power of the sellers. We first study best response dynamics in markets with sellers that provide a homogeneous good, and show that except for a modest number of initial rounds, the welfare is guaranteed to be high. We consider two variations: in the first the sellers have full information about the valuation of the buyer. Here we show that if there are nn items available across all sellers and nmaxn_{\max} is the maximum number of items controlled by any given seller, the ratio of the optimal welfare to the achieved welfare will be at most log(nnnmax+1)+1\log(\frac{n}{n-n_{\max}+1})+1. As the market power of the largest seller diminishes, the welfare becomes closer to optimal. In the second variation we consider an extended model where sellers have uncertainty about the buyer's valuation. Here we similarly show that the welfare improves as the market power of the largest seller decreases, yet with a worse ratio of nnnmax+1\frac{n}{n-n_{\max}+1}. The exponential gap in welfare between the two variations quantifies the value of accurately learning the buyer valuation. Finally, we show that extending our results to heterogeneous goods in general is not possible. Even for the simple class of kk-additive valuations, there exists a setting where the welfare approximates the optimal welfare within any non-zero factor only for O(1/s)O(1/s) fraction of the time, where ss is the number of sellers

    Metastability of Asymptotically Well-Behaved Potential Games

    Full text link
    One of the main criticisms to game theory concerns the assumption of full rationality. Logit dynamics is a decentralized algorithm in which a level of irrationality (a.k.a. "noise") is introduced in players' behavior. In this context, the solution concept of interest becomes the logit equilibrium, as opposed to Nash equilibria. Logit equilibria are distributions over strategy profiles that possess several nice properties, including existence and uniqueness. However, there are games in which their computation may take time exponential in the number of players. We therefore look at an approximate version of logit equilibria, called metastable distributions, introduced by Auletta et al. [SODA 2012]. These are distributions that remain stable (i.e., players do not go too far from it) for a super-polynomial number of steps (rather than forever, as for logit equilibria). The hope is that these distributions exist and can be reached quickly by logit dynamics. We identify a class of potential games, called asymptotically well-behaved, for which the behavior of the logit dynamics is not chaotic as the number of players increases so to guarantee meaningful asymptotic results. We prove that any such game admits distributions which are metastable no matter the level of noise present in the system, and the starting profile of the dynamics. These distributions can be quickly reached if the rationality level is not too big when compared to the inverse of the maximum difference in potential. Our proofs build on results which may be of independent interest, including some spectral characterizations of the transition matrix defined by logit dynamics for generic games and the relationship of several convergence measures for Markov chains

    Lymphedema after pelvic and para-aortic lymphadenectomy—results of a systematic evaluation in patients with cervical and endometrial carcinoma

    Get PDF
    Background Lymphedema is a frequent complication after surgical treatment in gynecological oncology with substantial impact on patients ' Quality of Life (QoL). Little is known about screening instruments and prevention. Primary objective was to develop and validate the German version of a 13 items screening questionnaire (SQ) developed by Yost et al. to provide a valid instrument for early diagnosis of lower extremity lymphedema (LEL). Methods After translation the SQ was used in pt. with cervical or endometrial cancer who underwent pelvic/paraaortic Lymphadenectomy. Sensitivity and specifity were analysed regarding possible prediction and influencing factors of LEL. Results 67 pt. had LEL (N = 128). Nearly 50% of women in each group (38 in LEL + e 30 in LEL - ) had a body mass index (BMI) > 30 kg/m(2). Number of removed lymphnodes, radiotherapy and were significantly associated with development of LEL. Translated Mayo Clinic questionnaire can be used with reliable specifity and sensitivity. Four additional questions improved the diagnostic accuracy of the SQ. Conclusions The translated SQ is a valuable and predictive tool for screening and early detection of LEL in Gynecological cancer surgery and can even improved by adding simple questions

    Fibroblast Growth Factor-2 Enhances Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells without Diminishing Their Immunosuppressive Potential

    Get PDF
    Allogeneic hematopoietic stem cell transplantation is the main curative therapy for many hematologic malignancies. Its potential relies on graft-versus-tumor effects which associate with graft-versus-host disease. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties that make them attractive therapeutic alternatives. We evaluated the in vitro immunosuppressive activity of medium conditioned by human MSCs from 5 donors expanded 13 passages with or without FGF-2. FGF-2 supplementation increased expansion 3,500- and 240,000-fold by passages 7 and 13, respectively. There were no differences in immunosuppressive activity between media conditioned by passage-matched cells expanded under different conditions, but media conditioned by FGF-treated MSCs were superior to population doubling-matched controls. The immunosuppressive activity was maintained in three of the preparations but decreased with expansion in two. The proliferation induced by FGF-2 did not result in loss of immunosuppressive activity. However, because the immunosuppressive activity was not consistently preserved, caution must be exercised to ensure that the activity of the cells is sufficient after extensive expansion

    Cognitive Dynamics: From Attractors to Active Inference

    Get PDF
    This paper combines recent formulations of self-organization and neuronal processing to provide an account of cognitive dynamics from basic principles. We start by showing that inference (and autopoiesis) are emergent features of any (weakly mixing) ergodic random dynamical system. We then apply the emergent dynamics to action and perception in a way that casts action as the fulfillment of (Bayesian) beliefs about the causes of sensations. More formally, we formulate ergodic flows on global random attractors as a generalized descent on a free energy functional of the internal states of a system. This formulation rests on a partition of states based on a Markov blanket that separates internal states from hidden states in the external milieu. This separation means that the internal states effectively represent external states probabilistically. The generalized descent is then related to classical Bayesian (e.g., Kalman-Bucy) filtering and predictive coding-of the sort that might be implemented in the brain. Finally, we present two simulations. The first simulates a primordial soup to illustrate the emergence of a Markov blanket and (active) inference about hidden states. The second uses the same emergent dynamics to simulate action and action observation

    Molecular impact of launch related dynamic vibrations and static hypergravity in planarians

    Get PDF
    Although many examples of simulated and real microgravity demonstrating their profound effect on biological systems are described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative process in a “whole animal” context. Therefore, planarians were subjected to 8.5 minutes of 4 g hypergravity (i.e. a human-rated launch level) in the Large Diameter Centrifuge (LDC) and/or to vibrations (20–2000 Hz, 11.3 Grms) simulating the conditions of a standard rocket launch. The transcriptional levels of genes (erg-1, runt-1, fos, jnk, and yki) related with the early stress response were quantified through qPCR. The results show that early response genes are severely deregulated after static and dynamic loads but more so after a combined exposure of dynamic (vibration) and static (hypergravity) loads, more closely simulating real launch exposure profiles. Importantly, at least four days after the exposure, the transcriptional levels of those genes are still deregulated. Our results highlight the deep impact that short exposures to hypergravity and vibration have in organisms, and thus the implications that space flight launch could have. These phenomena should be taken into account when planning for well-controlled microgravity studies

    The Measurement Process in Local Quantum Theory and the EPR Paradox

    Full text link
    We describe in a qualitative way a possible picture of the Measurement Process in Quantum Mechanics, which takes into account: 1. the finite and non zero time duration T of the interaction between the observed system and the microscopic part of the measurement apparatus; 2. the finite space size R of that apparatus; 3. the fact that the macroscopic part of the measurement apparatus, having the role of amplifying the effect of that interaction to a macroscopic scale, is composed by a very large but finite number N of particles. The conventional picture of the measurement, as an instantaneous action turning a pure state into a mixture, arises only in the limit in which N and R tend to infinity, and T tends to 0. We sketch here a proposed scheme, which still ought to be made mathematically precise in order to analyse its implications and to test it in specific models, where we argue that in Quantum Field Theory this picture should apply to the unique time evolution expressing the dynamics of a given theory, and should comply with the Principle of Locality. We comment on the Einstein Podolski Rosen thought experiment (partly modifying the discussion on this point in an earlier version of this note), reformulated here only in terms of local observables (rather than global ones, as one particle or polarisation observables). The local picture of the measurement process helps to make it clear that there is no conflict with the Principle of Locality.Comment: 18 page

    Dynamical biomarkers in teams and other multiagent systems

    Get PDF
    Effective team behavior in high-performance environments such as in sport and the military requires individual team members to efficiently perceive the unfolding task events, predict the actions and action intents of the other team members, and plan and execute their own actions to simultaneously accomplish individual and collective goals. To enhance team performance through effective cooperation, it is crucial to measure the situation awareness and dynamics of each team member and how they collectively impact the team's functioning. Further, to be practically useful for real-life settings, such measures must be easily obtainable from existing sensors. This paper presents several methodologies that can be used on positional and movement acceleration data of team members to quantify and/or predict team performance, assess situation awareness, and to help identify task-relevant information to support individual decision-making. Given the limited reporting of these methods within military cohorts, these methodologies are described using examples from team sports and teams training in virtual environments, with discussion as to how they can be applied to real-world military teams.</p
    corecore