261 research outputs found
Unraveling the phase behavior, mechanical stability, and protein reconstitution properties of polymer-lipid hybrid vesicles
Hybrid vesicles consisting of natural phospholipids and synthetic amphiphilic copolymers have shown remarkable material properties and potential for biotechnology, combining the robustness of polymers with the biocompatibility of phospholipid membranes. To predict and optimize the mixing behavior of lipids and copolymers, as well as understand the interaction between the hybrid membrane and macromolecules like membrane proteins, a comprehensive understanding at the molecular level is essential. This can be achieved by a combination of molecular dynamics simulations and experiments. Here, simulations of POPC and PBD22-b-PEO14 hybrid membranes are shown, uncovering different copolymer configurations depending on the polymer-to-lipid ratio. High polymer concentrations created thicker membranes with an extended polymer conformation, while high lipid content led to the collapse of the polymer chain. High concentrations of polymer were further correlated with a decreased area compression modulus and altered lateral pressure profiles, hypothesized to result in the experimentally observed improvement in membrane protein reconstitution and resistance toward destabilization by detergents. Finally, simulations of a WALP peptide embedded in the bilayer showed that only membranes with up to 50% polymer content favored a transmembrane configuration. These simulations correlate with previous and new experimental results and provide a deeper understanding of the properties of lipid-copolymer hybrid membranes
Night optimised care technology for users needing assisted lifestyles
There is growing interest in the development of ambient assisted living services to increase the quality of life of the increasing proportion of the older population. We report on the Night Optimised Care Technology for UseRs Needing Assisted Lifestyles project, which provides specialised night time support to people at early stages of dementia. This article explains the technical infrastructure, the intelligent software behind the decision-making driving the system, the software development process followed, the interfaces used to interact with the user, and the findings and lessons of our user-centred approach
Toward seamless environments for dispute prevention and resolution
Given the evolution of the Information Technology society, it is now rather simple to acquire products or services in a foreign country. This practice may conduct to the event of conflicts whenever a consumer detects some fault or malfunction in services or products he/she had bought. A situation that may worsen if at the time of the uncovering of the defect, the shopper is already in a different geographical arena. There is thus the need to develop computational tools that may prevent these disputes from even happening. In this work it is proposed the development of seamless intelligent environments for dispute resolution that will surround the user, independently of his/her location. It is described the implementation of a prototype that may provide contextualized real-time information and legal support to consumers. The objective is to decrease the number of disputes due to a poor understanding in relation to the The Law and make justice more personalized and closer to people.The work described in this paper was developed under the TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portuga
An AAL collaborative system: the AAL4ALL and a mobile assistant case study
"15th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2014, Amsterdam, The Netherlands, October 6-8, 2014"The areas of Ambient Assisted Living (AAL) and Intelligent Systems (IS) are in full development, but there are still some issues to be resolved. One issue is the myriad of user oriented solutions that are rarely built to interact or integrate with other systems available in the market. In this paper we present the AAL4ALL project and the UserAccess implementation, showing a novel approach towards virtual organizations, interoperability and certification. The aim of this project is to provide a collaborative network of services and devices that connect every user and product from other developers, building a heterogeneous ecosystem. Thus establishing an environment for collaborative care systems, which may be available to the users in from of safety services, comfort services and healthcare services.Project "AAL4ALL", co-financed by the European Community Fund FEDER, through COMPETE - Programa Operacional Factores de Competitividade (POFC). Foundation for Science and Technology (FCT), Lisbon, Portugal, through Project PEst-C/CTM/LA0025/2013 and the project PEst-OE/EEI/UI0752/2014.
Project CAMCoF - Context-aware Multimodal Communication Framework fund-ed by ERDF -European Regional Development Fund through the COMPETE Pro-gramme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980
A different approach in an AAL ecosystem: a mobile assistant for the caregiver
Currently the Ambient Assisted Living and the Ambient Intelligence areas are very prolific. There is a demand of security and comfort that should be ensured at people’s homes. The AAL4ALL (ambient assisted living for all) pro-ject aims to develop a unified ecosystem and a certification process, allowing the development of fully compatible devices and services. The UserAccess emerges from the AAL4ALL project, being a demonstration of its validity. The UserAc-cess architecture, implementation, interfaces and test scenario are presented, along with the sensor platform specially developed for the AAL4ALL project.Project "AAL4ALL", co-financed by the European Community Fund FEDER, through COMPETE - Programa Operacional Factores de Competitividade (POFC). Foundation for Science and Technology (FCT), Lisbon, Portugal, through Project PEst-C/CTM/LA0025/2013 and the project PEst-OE/EEI/UI0752/2014.
Project CAMCoF - Context-aware Multimodal Communication Framework funded by ERDF -European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980
Resonant Raman scattering off neutral quantum dots
Resonant inelastic (Raman) light scattering off neutral GaAs quantum dots
which contain a mean number, N=42, of electron-hole pairs is computed. We find
Raman amplitudes corresponding to strongly collective final states
(charge-density excitations) of similar magnitude as the amplitudes related to
weakly collective or single-particle excitations. As a function of the incident
laser frequency or the magnetic field, they are rapidly varying amplitudes. It
is argued that strong Raman peaks should come out in the spin-density channels,
not related to valence-band mixing effects in the intermediate states.Comment: Accepted in Physical Review
Spin polarization and magneto-luminescence of confined electron-hole systems
A BCS-like variational wave-function, which is exact in the infinite field
limit, is used to study the interplay among Zeeman energies, lateral
confinement and particle correlations induced by the Coulomb interactions in
strongly pumped neutral quantum dots. Band mixing effects are partially
incorporated by means of field-dependent masses and g-factors. The spin
polarization and the magneto-luminescence are computed as functions of the
number of electron-hole pairs present in the dot and the applied magnetic
field.Comment: To appear in Phys. Rev.
- …