3,924 research outputs found

    Restriction on the energy and luminosity of e+e- storage rings due to beamstrahlung

    Full text link
    The role of beamstrahlung in high-energy e+e- storage-ring colliders (SRCs) is examined. Particle loss due to the emission of single energetic beamstrahlung photons is shown to impose a fundamental limit on SRC luminosities at energies 2E_0 >~ 140 GeV for head-on collisions and 2E_0 >~ 40 GeV for crab-waist collisions. With beamstrahlung taken into account, we explore the viability of SRCs in the E_0=240-500 GeV range, which is of interest in the precision study of the Higgs boson. At 2E_0=240 GeV, SRCs are found to be competitive with linear colliders; however, at 2E_0=400-500 GeV, the attainable SRC luminosity would be a factor 15-25 smaller than desired.Comment: Latex, 5 pages. v2 differs only by minor changes is abstract and introduction, one reference is added. v3 corresponds to the paper published in PR

    Soil and Phyllosphere Microorganisms of the Rapeseed (Brassica napus L.) Holobiont Involved in Chloromethane Emissions

    Get PDF
    Brassica napus, or rapeseed, is one major oilseed crop in Europe and Germany and is used for food, feed, and Biodiesel production. Chloromethane (CH3Cl) is the most abundant halogenated organic compound in the atmosphere and triggers the chlorine-mediated destruction of the ozone layer. Anthropogenic sources became negligible because of taken measures according to the Montreal Protocol (1987) and therefore natural sources such as plants became more relevant for the global chloromethane budget. The actual global budget is imbalanced through missing sinks, which may be activities of soil and phyllosphere microbiomes which together with the plant is considered as the holobiont. The amount of CH3Cl from crops has not been addressed and might even increase under stresses such as elevated soil salinization and temperature. We proved that B. napus (rapeseed) plants emit CH3Cl. Certain methylotrophs (microorganisms that utilize one-carbon compounds) degrade CH3Cl and can gain a selective advantage while colonizing plants. Moreover, methylotrophs thrive in the rhizosphere of grassland plants. The rapeseed associated microbiome likely harbours methylotrophs that degrade CH3Cl. Therefore, we addressed in this study the rapeseed holobiont to resolve its response to stressors such as salt and temperature in regard to CH3Cl emission. We addressed in our project the following objectives: (i) To measure CH3Cl emission rates from single B. napus holobionts under different NaCl and temperature stress levels in pot experiments, (ii) to assess the B. napus microbiome and its CH3Cl degradation ability through amplicon sequencing of bacterial 16S rRNA genes and functional gene markers. The summer cultivar MAKRO was used as a model organism. We identified methylotrophs that responded to salt and temperature stress conditions in the phyllo- and rhizosphere of rapeseed and correlated those to the observed net emission rates

    Modification of Kawai model about the mixing of the pseudoscalar mesons

    Get PDF
    The Kawai model describing the glueball-quarkonia mixing is modified. The mixing of η\eta, ηâ€Č\eta^\prime and η(1410)\eta(1410) is re-investigated based on the modified Kawai model. The glueball-quarkonia content of the three states is determined from a fit to the data of the electromagnetic decays involving η\eta, ηâ€Č\eta^\prime. Some predictions about the electromagnetic decays involving η(1410)\eta(1410) are presented.Comment: revtex 8 page

    Quark-Resonance model

    Get PDF
    We construct an effective Lagrangian for low energy hadronic interactions through an infinite expansion in inverse powers of the low energy cutoff Λχ\Lambda_\chi of all possible chiral invariant non-renormalizable interactions between quarks and mesons degrees of freedom. We restrict our analysis to the leading terms in the 1/Nc1/N_c expansion. The effective expansion is in (\mu^2/\cutoff^2 )^P \ln (\cutoff^2/\mu^2 )^Q. Concerning the next-to-leading order, we show that, while the pure \mu^2/\cutoff^2 corrections cannot be traced back to a finite number of non renormalizable interactions, those of order (\mu^2/\cutoff^2 ) \ln (\cutoff^2/\mu^2 ) receive contributions from a finite set of 1/\cutoff^2 terms. Their presence modifies the behaviour of observable quantities in the intermediate Q2Q^2 region. We explicitely discuss their relevance for the two point vector currents Green's function.Comment: 41 pages, 11 figures, preprint ROM2F 93/3

    Magnetism in Semiconducting Molybdenum Dichalcogenides

    Get PDF
    Transition metal dichalcogenides (TMDs) are interesting for understanding fundamental physics of two-dimensional materials (2D) as well as for many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below TM = 40 K and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin-rotation (muSR), scanning tunneling microscopy (STM), as well as density functional theory (DFT) calculations. The muon spin rotation measurements show the presence of a large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites which are randomly distributed in the lattice at the sub-percent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9-2.8 mu_B. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and opens a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.Comment: 13 pages, 10 Figure

    Detecting Gluino-Containing Hadrons

    Get PDF
    When SUSY breaking produces only dimension-2 operators, gluino and photino masses are of order 1 GeV or less. The gluon-gluino bound state has mass 1.3-2.2 GeV and lifetime > 10^{-5} - 10^{-10} s. This range of mass and lifetime is largely unconstrained because missing energy and beam dump techniques are ineffective. With only small modifications, upcoming K^0 decay experiments can study most of the interesting range. The lightest gluino-containing baryon (uds-gluino) is long-lived or stable; experiments to find it and the uud-gluino are also discussed.Comment: 13 pp, 1 figure (uuencoded). Descendant of hep-ph/9504295, hep-ph/9508291, and hep-ph/9508292, focused on experimental search techniques. To be published in Phys Rev Let

    Unquenching the scalar glueball

    Get PDF
    Computations in the quenched approximation on the lattice predict the lightest glueball to be a scalar in the 1.5-1.8 GeV region. Here we calculate the dynamical effect the coupling to two pseudoscalars has on the mass, width and decay pattern of such a scalar glueball. These hadronic interactions allow mixing with the qq‟q \overline q scalar nonet, which is largely fixed by the well-established K_0^*(1430). This non-perturbative mixing means that, if the pure gluestate has a width to two pseudoscalar channels of ~100 MeV as predicted on the lattice, the resulting hadron has a width to these channels of only ~30 MeV with a large eta-eta component. Experimental results need to be reanalyzed in the light of these predictions to decide if either the f_0(1500) or an f_0(1710) coincides with this dressed glueball.Comment: 12 pages, LaTex, 3 Postscript figure

    Sensitivity analysis and model order reduction for random linear dynamical systems

    Get PDF
    Abstract We consider linear dynamical systems defined by differential algebraic equations. The associated input-output behaviour is given by a transfer function in the frequency domain. Physical parameters of the dynamical system are replaced by random variables to quantify uncertainties. We analyse the sensitivity of the transfer function with respect to the random variables. Total sensitivity coefficients are computed by a nonintrusive and by an intrusive method based on the expansions in series of the polynomial chaos. In addition, a reduction of the state space is applied in the intrusive method. Due to the sensitivities, we perform a model order reduction within the random space by changing unessential random variables back to constants. The error of this reduction is analysed. We present numerical simulations of a test example modelling a linear electric network

    Rho - Omega Splitting and Mixing in Nuclear Matter

    Full text link
    We investigate the splitting and mixing of ρ\rho and ω\omega mesons in nuclear matter. The calculations were performed on the basis of QCD sum rules and include all operators up to mass dimension-6 twist-4 and up to first order in the coupling constants. Special attention is devoted to the impact of the scalar 4-quark condensates on both effects. In nuclear matter the Landau damping governs the ρ−ω\rho - \omega mass splitting while the scalar 4-quark condensates govern the strenght of individual mass shifts. A strong in-medium mass splitting causes the disappearance of the ρ−ω\rho - \omega mixing.Comment: 28 pages, 8 figures, Phys. Rev. C 70 (2004) 03520
    • 

    corecore