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Abstract

We consider linear dynamical systems defined by differential algebraic
equations. The associated input-output behaviour is given by a transfer
function in the frequency domain. Physical parameters of the dynamical
system are replaced by random variables to quantify uncertainties. We
analyse the sensitivity of the transfer function with respect to the random
variables. Total sensitivity coefficients are computed by a nonintrusive
and by an intrusive method based on the expansions in series of the
polynomial chaos. In addition, a reduction of the state space is applied
in the intrusive method. Due to the sensitivities, we perform a model
order reduction within the random space by changing unessential random
variables back to constants. The error of this reduction is analysed. We
present numerical simulations of a test example modelling a linear electric
network.

Key words: linear dynamical systems, differential algebraic equations,
sensitivity analysis, model order reduction, random variables, polynomial
chaos, uncertainty quantification, electric circuits.
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1 Introduction

Mathematical modelling of technical applications often results in systems of dif-
ferential algebraic equations (DAEs). Examples are models of electric circuits or
multibody dynamics, see [10, 20]. We consider linear dynamical systems, which
represent DAEs or ordinary differential equations (ODEs). A Laplace transfor-
mation reveals the input-output behaviour in the frequency domain.

The physical parameters of the system may exhibit uncertainties. We substitute
the parameters by independent random variables for modelling the uncertainties.
The number of parameters is often large, since the technical application involves
many components. Thus our aim is to obtain an uncertainty quantification in
case of a high-dimensional random space. The large number of random variables
makes a numerical simulation by standard methods too costly. Thus we require
techniques of model order reduction (MOR) to decrease the complexity.

Appropriate MOR methods to reduce the dimension of the state space for linear
dynamical systems already exist based on the transfer function, see [1, 5, 7,
19]. Our idea is to analyse the transfer function also for a reduction of a high-
dimensional random space in the stochastic modelling. Concepts for a variance-
based sensitivity analysis are available for general functions depending on random
variables, see [21].

We compute the required total sensitivity coefficients approximately by the ex-
pansions of the generalised polynomial chaos (gPC), following [24]. For this
purpose, we investigate nonintrusive approaches based on quadrature as well
as intrusive approaches resulting from the stochastic Galerkin method, see [28].
Moreover, an MOR of the state space is considered for the huge systems in the
intrusive method. Techniques based on gPC have been applied successfully to
nonlinear ODEs in [2, 3] and to linear or nonlinear DAEs in [12, 13, 14, 15, 16, 17].

Sobol [21] suggests to replace random variables with relatively small total sen-
sitivities by constants. We apply this approach to reduce the dimension of the
random space observing the sensitivity of the transfer function. While just sparse
grids or sampling methods are able to tackle high-dimensional problems, the re-
duced order model can be resolved by highly accurate tensor-product grids now.
We analyse the error of the reduction in the probability space and its interaction
between the frequency domain and the time domain. Furthermore, numerical
simulations of a test example confirm the efficiency of this MOR in the random
space.

The paper is organised as follows. The type of linear problems and the stochastic
modelling is introduced in Sect. 2. The gPC expansions and the related numerical
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methods are specified in Sect. 3. We outline the sensitivity analysis and construct
our MOR approach in Sect. 4. The error of this MOR is estimated stochastically.
In Sect. 5, we present results of numerical simulations using the derived strategy.
An appendix contains the proofs of the theorems stated in Sect. 4.

2 Dynamical Systems with Random Parameters

In this section, we define the problems to be investigated. Therein, the depen-
dence of linear dynamical systems on physical parameters is substantial.

2.1 Linear dynamical systems

We discuss linear systems of the form

C(p)x′(t, p) +G(p)x(t, p) = Bu(t)
y(t, p) = Lx(t, p)

(1)

for t ∈ It with It = [0, tend] or It = [0,∞). The matrices C(p), G(p) ∈ RN×N

depend on parameters p ∈ Π ⊆ RQ. Thus the state variables x : It × Π → R
N

are also parameter-dependent. Input signals u : It → R
Nin are introduced via a

constant matrix B ∈ RN×Nin . We define output signals y : It × Π → R
Nout by

the state variables using a constant matrix L ∈ RNout×N .

Often the matrix C(p) is singular for all p ∈ Π, i.e., the system (1) represents
DAEs. We assume that the associated matrix pencil C(p) + λG(p) is regular for
each p ∈ Π to guarantee existence and uniqueness of solutions for initial value
problems. Moreover, let the matrix pencil be regular in the limit case λ → ∞ to
ensure the applicability of time integration techniques, cf. [11]. If G(p) is regular
for all p ∈ Π, then we obtain existence and uniqueness of stationary solutions for
each p.

Without loss of generality, we assume initial values x(0, p) = 0, since the trans-
formation z(t, p) := x(t, p)−x(0, p) is applied otherwise. In addition, we consider
the case u(0) = 0 for the input. Let X(s, p), Y (s, p), U(s) for s ∈ Σ ⊆ C be the
Laplace transforms of the state variables, the output signals and the input signals,
respectively. Often just the imaginary axis s = iω for frequencies ω ∈ R is con-
sidered. A transformation of the linear dynamical system (1) into the frequency
domain yields the input-output relation

Y (s, p) = H(s, p)U(s) (2)
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with the transfer function H : Σ× Π → C
Nout×Nin defined by

H(s, p) := L (G(p) + sC(p))−1 B (3)

for s ∈ Σ. The involved inverse matrix can be singular at a finite number of
poles. More details are given in [1, 5, 7, 19].

2.2 Stochastic Modelling

The parameters p ∈ Π of the linear dynamical system (1) may exhibit uncer-
tainties. To achieve an uncertainty quantification, we replace the parameters by
independent random variables on a random space (Ω,A, µ), i.e.,

p : Ω → Π, p(ω) = (p1(ω), . . . , pQ(ω)).

We apply traditional distributions like Gaussian, uniform, beta, etc. to model
the uncertainties. Thus a probability density ρ : Π → R is available. The state
variables as well as the output of the system (1) becomes a random process in
time domain.

We define associated spaces of integrable functions by

Lk(Π, ρ) := {f : Π → K : f measurable and ⟨f(p)k⟩ < ∞}
for each integer k and K = R or K = C. For a function f ∈ L1(Π, ρ), we
introduce the abbreviation

⟨f(p)⟩ :=
∫
Ω

f(p(ω)) dµ(ω) =

∫
Π

f(p)ρ(p) dp (4)

for the expected value. We obtain an inner product

⟨f(p)g(p)⟩ =
∫
Π

f(p)g(p)ρ(p) dp (5)

on the Hilbert space L2(Π, ρ). We apply the notation (4) also to vector-valued
and matrix-valued functions by considering the integration componentwise.

Similarly, the Laplace transforms X(s, p), Y (s, p) become random processes in
frequency domain. We investigate the transfer functionH(s, p) as random process
in the following sections, since it describes the input-output behaviour of the
stochastic model.

3 Polynomial Chaos Techniques

We introduce the polynomial chaos expansions and associated numerical methods
as a tool for the sensitivity analysis in Section 4.2.
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3.1 Polynomial Chaos Expansions

The generalised polynomial chaos (gPC) is applicable for a broad class of random
distributions, see [26] and the references therein. We use this concept to the state
variables and the output of the linear dynamical system (1) as well as the transfer
function (3). Assuming finite second moments, the gPC expansion of the state
variables reads

x(t, p(ω)) =
∞∑
i=0

vi(t)Φi(p(ω)) (6)

for t ∈ It. including a complete set of basis polynomials (Φi)i∈N with Φi : Π → R.
Let the set be orthonormal, i.e., ⟨ΦiΦj⟩ = δij using the Kronecker-delta, and
Φ0 ≡ 1. The basis polynomials are given a priori by the choice of the random
distributions of the parameters, see [26]. The time-dependent coefficient functions
vi : It → R

N represent inner products (5)

vi(t) = ⟨x(t, p)Φi(p)⟩ for each i ∈ N (7)

and each t ∈ It. The expansion (6) converges in the norm of the Hilbert space
L2(Π, ρ) for each fixed t. We consider the variance of the state variables com-
ponentwise by the usual definition Var(xj) := ⟨(xj − ⟨xj⟩)2⟩ for each t ∈ It and
j = 1, . . . , N . More details can be found in the two monographs [8, 28].

We obtain numerical approximations of a gPC expansion (6) by a truncation to

xM(t, p) =
M−1∑
i=0

vi(t)Φi(p). (8)

Typically, all polynomials up to some degree D are included in (8), i.e., the num-
ber of basis functions becomes M = (D +Q)!/(D!Q!). Now numerical solutions
of the finite set of coefficient functions have to be determined.

Likewise, a gPC expansion exists for the output by

y(t, p) =
∞∑
i=0

wi(t)Φi(p) (9)

for each fixed t ∈ It with coefficients wi : It → R
Nout , since L is a constant matrix.

Let the expansion of the transfer function be

H(s, p(ω)) =
∞∑
i=0

Hi(s)Φi(p(ω)) (10)

for s ∈ Σ and coefficients Hi : Σ → C
Nout×Nin .
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3.2 Nonintrusive Methods

The aim is to compute an approximation of the coefficients in the truncated gPC
expansion (8). The exact coefficients represent expected values due to (7). These
probabilistic integrals can be approximated by a multidimensional quadrature or
by a sampling method. In each case, we obtain an approximation of the form

ṽi(t) =
K∑
k=1

γkΦk(pk)x(t, pk) (11)

with (deterministic) nodes pk ∈ Π and weights γk ∈ R. Monte-Carlo as well as
quasi Monte-Carlo methods exhibit the weights γk =

1
K

for all k. This approach
is called nonintrusive, since an evaluation of (11) requires to solve K linear dy-
namical systems (1), which can be done directly. Another name of this type of
methods is stochastic collocation, see [27].

In theory, the same fixed quadrature scheme (with constant K) yields approxi-
mations of the vi for each i. In practice, higher-order quadrature techniques have
to be used for coefficients vi associated to basis polynomials Φi of a larger degree
to obtain sufficiently accurate approximations. Thus the number of nodes K
depends on the choice of the maximum degree D.

The above statements for the gPC coefficients of the state variables also apply to
the coefficients Hi within the gPC expansion (10) of the transfer function. The
approximations read

H̃i(s) =
K∑
k=1

γkΦi(pk)L (G(pk) + sC(pk))
−1B, (12)

which requires to solve Nin linear systems with an identical matrix for each node
k = 1, . . . , K.

3.3 Intrusive Methods

Alternatively, we obtain approximations of the unknown coefficients in the trun-
cated gPC expansion (8) by a stochastic Galerkin method, see [28]. This approach
yields a much larger and coupled system

Ĉv̂′(t) + Ĝv̂(t) = B̂u(t)

ŵ(t) = L̂v̂(t)
(13)

satisfied by approximations v̂ := (v̂0, . . . , v̂M−1) and ŵ := (ŵ0, . . . , ŵM−1) of the
coefficients for state variables and output signals, respectively, cf. (6) and (9).
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The involved matrices Ĉ, Ĝ ∈ RMN×MN are defined by the minors

Ĉij := ⟨C(p)Φi(p)Φj(p)⟩, Ĝij := ⟨G(p)Φi(p)Φj(p)⟩ (14)

for i, j = 0, 1, . . . ,M − 1. We assume that the components of the matrices
C(p), G(p) are polynomials in p. Thus the complete matrices Ĉ, Ĝ can be com-
puted exactly by a Gaussian quadrature except for roundoff errors. For example,
modified nodal analysis yields matrices with a linear dependence on the param-
eters in case of linear electric networks, cf. [10]. Otherwise, a redefinition of
parameters often enables to meet this assumption (for example, 1/p is replaced
by p∗ := 1/p and a random distribution is considered for p∗). The matrices
B̂ ∈ RMN×Nin and L̂ ∈ RMNout×MN simply result to

B̂ := e1 ⊗B, L̂ := IM ⊗ L (15)

using the Kronecker product, the unit vector e1 := (1, 0, . . . , 0)⊤ ∈ RM and the
identity matrix IM ∈ RM×M .

The equations (13) represent a linear dynamical system again. The input-output
relation is given by

Ŵ (s) = Ĥ(s)U(s), (16)

where Ŵ (s) are the Laplace transforms of ŵ(t). The associated transfer function
Ĥ : Σ → C

MNout×Nin reads

Ĥ(s) := L̂(Ĝ+ sĈ)−1B̂ (17)

for s ∈ Σ. This transfer function yields approximations of the gPC coefficients of
the original transfer function from (10). It holds that the minor Ĥi ∈ CNout×Nin

(rows with indices (i − 1)Nout + 1, . . . , iNout in Ĥ) approximates the exact gPC
coefficients Hi.

We motivate the approximation Hi ≈ Ĥi by two independent interpretations.
On the one hand, the time domain function ŵi(t) represents an approximation of
wi(t) = ⟨y(t, p)Φi(p)⟩ and thus the corresponding Laplace transforms should be
close to each other. We expect due to (2)

Ŵi(s) ≈ ⟨Y (s, p)Φi(p)⟩ = ⟨H(s, p)U(s)Φi(p)⟩ = Hi(s)U(s).

Thus it follows Hi ≈ Ĥi by a comparison to (16). On the other hand, the
behaviour of the involved matrices Ĝ, Ĉ often implies that the minors satisfy

((Ĝ+ sĈ)−1)ij ≈ ⟨(G(p) + sC(p))−1Φi(p)Φj(p)⟩

for min{i, j} ≪ M . The specific structure of B̂, L̂ in (15) causes a simplification
into

Ĥi(s) = L((Ĝ+ sĈ)−1)i0B ≈ ⟨L(G(p) + sC(p))−1BΦi(p)⟩ = Hi(s)

due to Φ0 ≡ 1. Furthermore, we note that conclusions on the regularity of Ĝ+sĈ
using the regularity of G(p) + sC(p) can be done by results for the associated
spectra introduced in [22].
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4 Model Order Reduction

We derive a reduced order model with respect to the random space based on a
sensitivity analysis now.

4.1 Concepts of Model Order Reduction

Several concept of MOR exist for linear and nonlinear dynamical systems, see [1,
5, 19]. We focus on two approaches applied to the linear dynamical system (1):

(i) Reduction of the state space
The linear dynamical system (1) is reduced to a smaller system

C̃(p)x̃′(t, p) + G̃(p)x̃(t, p) = B̃u(t) (18)

with solution x̃ : It × Π → R
Nred and Nred ≪ N . The methods typically

yield a matrix V (p) ∈ RN×Nred such that the solution of the reduced system
can be projected into the original state space. The aim of the reduction is
to still achieve a good approximation of the output, i.e.,

ỹ(t, p) := L V (p)x̃(t, p) ≈ L x(t, p) = y(t, p)

should be satisfied as accurate as possible in some error norm.

(ii) Reduction of the random space
Based on a sensitivity analysis, the importance of the random parameters is
quantified. Let J ⊂ {1, . . . , Q} be the indices of the chosen crucial random
variables p̃, i.e., p̃ = {pj : j ∈ J }. We create a mapping W : Πred → Π,
p̃ 7→ p componentwise by defining Wj(p) := pj for j ∈ J and Wj(p) := p̄j
for j /∈ J using a constant value p̄j like the mean p̄j := ⟨pj⟩, for example.
It follows that the linear dynamical system (1) is reduced to

C(W (p̃))x̃′(t, p̃) +G(W (p̃))x̃(t, p̃) = Bu(t) (19)

with the same dimension of the state space for x̃. Yet the system (19)
depends only on Qred := |J | random variables. Let R : Π → Πred be the
restriction of p onto the variables p̃. It holds that R ◦ W is the identity
on Πred. The aim is to achieve Qred ≪ Q, while still obtaining a good
approximation of the output

ỹ(t, p) := L x̃(t, R(p)) ≈ L x(t, p) = y(t, p)

in the random space.
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Parametric model order reduction (pMOR) yields reduced systems (18), where
the parameters p still appear as independent variables, see [4, 6, 25]. Conse-
quently, the computational effort becomes lower in a nonintrusive method for
random parameters. However, the application of pMOR is not within the scope
of this paper. We will apply a reduction of the state space to the large coupled
system (13), since its dimension is large even for small N in case of a high-
dimensional random space. In the system (13), the parameters already disap-
peared due to the probabilistic integration (14).

In the approach (i), reduced order models (18) can be constructed by approxi-
mating the associated transfer function (2), see [7]. Thus our idea is to apply the
transfer function also within the approach (ii).

4.2 Sensitivity Analysis

The aim is to determine sensitivities, which quantify the influence of a random
variable on the output of the system (1). Variance-based sensitivity coefficients
are defined via the Sobol decomposition [21] in case of uniform distributions. This
concept can be generalised to other random distributions by gPC expansions,
see [24].

Let f ∈ L2(Π, ρ) be a continuous real-valued function depending on the random
parameters, whose gPC coefficients are (fi)i∈N. Thus its variance is given by

Var(f) =
∞∑
i=1

f 2
i .

We recall that the multivariate polynomials (Φi)i∈N are just the products of the
univariate orthonormal polynomials with respect to each random distribution.
The total sensitivity of the jth random parameter reads

Sj :=
Vj

Var(f)
with Vj :=

∑
i∈Ij

f 2
i for j = 1, . . . , Q (20)

with a set Ij defined as follows. It holds that i ∈ Ij if and only if Φi varies
with respect to the random variable pj, i.e., Φi includes a nonconstant univariate
polynomial in pj. Hence the bounds 0 ≤ Sj ≤ 1 apply for each j. We obtain
approximations of the total sensitivities (20) by a truncated expansion

V D
j :=

∑
i∈ID

j

f 2
i with ID

j := {i ∈ Ij : degree(Φi) ≤ D}. (21)

Although the bounds 1 ≤ S1 + · · ·+ SQ ≤ Q hold, the sum of the total sensitiv-
ities is often close to the lower bound. In view of this variability of the sum of
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sensitivities, we apply the standardisation

S∗
j := Sj

(
Q∑
l=1

Sl

)−1

for j = 1, . . . , Q (22)

to achieve S∗
1 + · · · + S∗

Q = 1. This standardisation is useful to compare and to
illustrate results.

The sensitivity analysis tells us, which random variables are crucial or unessential.
A parameter-based reduction can be achieved by freezing unessential random
variables. We analyse the resulting error briefly. Let p = (q, r) with q ∈ RQred and
r ∈ RQ−Qred be a partition of the random variables. Without loss of generality,
the first components q correspond to p̃ in (19). Since we assume independent
random variables, associated probability measures µq, µr are available. We replace
the random variables r by constants r0 within the range of r. The error of this
simplification quantified in the space L2(Π, ρ) reads

δ(r0) :=

√
⟨(f(q, r)− f(q, r0))2⟩√

Var(f)
, (23)

which represents a relative error with respect to the total variance. We assume
a positive variance, since an uncertainty quantification is unnecessary otherwise.
The following theorem shows that appropriate constants r0 for freezing unessen-
tial variables do exist.

Theorem 1 For ε > 0, there is a set Bε ⊂ R
Q−Qred with probability measure

µr(Bε) ≥ 1− ε such that

δ(r0)
2 <

1 + ε−1

Var(f)

∑
i∈Ir

f 2
i < (1 + ε−1)

Q∑
j=Qred+1

Sj (24)

for all r0 ∈ Bε, where i ∈ Ir holds if and only if the basis polynomial Φi depends
on some random variable in r.

This theorem is mainly a generalisation of Theorem 2 in [21], where uniform
distributions are considered. The proof is given in the appendix.

Theorem 1 demonstrates that freezing random variables results in a small er-
ror (23) if the associated sensitivity coefficients Sj are relatively small. Using
the sharper bound based on Ir in (24) would be more advantageous. However,
all possible partitions p = (q, r) have to be checked in this case, which causes
a huge computational effort for large Q (2Q subsets of {p1, . . . , pQ}). The total
sensitivities allow for just comparing the numbers S1, . . . , SQ.
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Table 1: Sources of errors in total sensitivities.

nonintrusive technique intrusive technique
truncation error truncation error

— Galerkin method error
quadrature error —

Often the mean value r0 := ⟨r⟩ achieves a small error, which can be verified
by the computation of an approximation to (23). If the mean value causes a
bad approximation, then random numbers r0 are drawn successively until the
estimate (24) is satisfied.

We will apply this concept to the componentwise to the matrix-valued transfer
function H(s, p) in (2), where the total sensitivities become functions depending
on the frequency s. Table 1 summarises the effects causing numerical errors in
the computed sensitivity coefficients for the intrusive and the nonintrusive ap-
proach. In both methods, a truncation error appears, since a gPC expansion
is replaced by a finite sum. The intrusive technique includes the error of the
Galerkin method, i.e., the exact solution of the coupled system (13) represents
just an approximation of the gPC coefficients. On the one hand, the quadra-
ture error often dominates in the nonintrusive method. On the other hand, a
quadrature error does not occur in the intrusive method, since we assume that
the matrices C(p), G(p) are polynomials in p, which allow for exact computations.
Furthermore, an error appears in the intrusive method if the state space of (13)
is reduced.

We briefly discuss the computational effort of the different methods to compute
the total sensitivities. Let Nfr discrete frequency points be given, where the
sensitivity of the transfer function is evaluated. We assume that linear systems
are solved by LU -decompositions, which represents the main part of the com-
putational work. In a nonintrusive method with K nodes of the quadrature, we
require NfrK decompositions of systems of dimension N . We recall that K de-
pends on the degree of the polynomials and thus indirectly on M . In the intrusive
method, Nfr decompositions of the larger dimension MN appear. If we reduce
the state space to Nred ≪ MN in the stochastic Galerkin method using just a
single expansion point s0 = iω0 ∈ C, then we require just a single decomposi-
tion of dimension MN and afterwards Nfr decompositions of small matrices of
dimension Nred.
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4.3 Reduction of the Random Space

Now we reconsider the MOR approach in the high-dimensional random space
from Sect. 4.1. Let s = iω for ω ∈ Iω ⊆ R, where Iω is a closed interval. We
allow for a single frequency (Iω = {ω0}) as well as for an unbounded interval. A
threshold η ∈ (0, 1), say η = 0.01, is introduced to control the accuracy of the
reduced order model. We restrict ourselfes to single-input-single-output systems,
for simplicity, and generalise the strategy later. Let S∗

j (s) for j = 1, . . . , Q be
the sensitivity coefficients (22) for either the real part or the imaginary part of
the transfer function H(s, p) associated to the linear dynamical system (1). For
fixed s, we reorder these sensitivities to achieve

S∗
j1(s)

(s) ≥ S∗
j2(s)

(s) ≥ · · · ≥ S∗
jQ(s)(s).

If equality holds for two or more coefficients, then a unique ordering follows by
assuming ascending indices in such a group. We note that this ordering may vary
with s. Let K(s) be the smallest integer such that

K(s)∑
k=1

S∗
jk(s)

(s) > 1− η. (25)

In the worst case, it holds K(s) = Q. Furthermore, we define the sets of the
respective parameters

p̃(s) := {pj1(s), . . . , pjK(s)
}.

In this way, we obtain integers Kre(s), Kim(s) and sets p̃re(s), p̃im(s) for the real
part and the imaginary part, respectively. Now the reduced set of random pa-
rameters is defined as

p̃ :=
∪
ω∈Iω

(p̃re(iω) ∪ p̃im(iω)) . (26)

In practice, the interval Iω is replaced by a finite grid of frequency points. In the
worst case, we obtain no reduction, i.e., p̃ = {p1, . . . , pQ}.

Since the transfer function is complex valued, we define the error by

e(s, r0) :=
√
⟨|H(s, q, r)−H(s, q, r0)|2⟩. (27)

It follows that

e(s, r0)
2 := ⟨re2(H(s, q, r)−H(s, q, r0))⟩+ ⟨im2(H(s, q, r)−H(s, q, r0))⟩.

Hence we can analyse the error of the real part and imaginary part separately.
However, if the variance of the real part is much smaller than the variance of the
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imaginary part or vice versa, then it makes sense to consider the dominating part
in the MOR, i.e., the insignificant part is neglected in (26).

The aim is that the error (27) satisfies e(iω, r0) < θ with a tolerance θ > 0 for
all ω ∈ Iω and some fixed r0. Let f be the real part or imaginary part of the
transfer function. We require that the error with respect to f is less than θ/

√
2.

It follows that a sufficient condition on η in (25) is

η ≤ θ2

2

(
(1 + ε−1)Var(f)

Q∑
j=1

Sj

)−1

.

with ε > 0 chosen to apply Theorem 1. We note that η is still independent of a
choice of the constant values r0. Theorem 1 tells us that appropriate values r0
exist for each s for real part as well as for imaginary part. Theoretically, the
feasible set of constants r0 may become tiny in probability if all ω ∈ Iω are
considered. Thus the determination of a suitable r0 would require to draw many
random numbers and to check the error (27). Nevertheless, the set of reasonable
constants r0 often exhibits a relatively high probability due to the correlations
between the different frequencies.

In the case of explicit ODEs (C(p) ≡ IN), we obtain an estimate on the error of
the output assuming a compact support of the Laplace transform of the input.
For simplicity, we consider single-input-single-output systems. The energy of the
input is assumed to be bounded.

Theorem 2 Let ∥u(t)∥L2([0,∞)) < ∞ and U(iω) = 0 for ω /∈ Iω. If the system (1)
consists of explicit ODEs, then the estimate

max
t>0

∥y(t, p)− ỹ(t, p)∥L2(Π,ρ) ≤ 1√
2π

· ∥e(iω, r0)∥L2(Iω) · ∥u(t)∥L2([0,∞))

holds for constant r0 with the error (27) provided that the probabilistic integration
and the integration in frequency domain can be interchanged.

The proof can be found in the Appendix. For the special case Iω = R, parts of
the proof coincide with [9], page 2.

If desired, the error (27) can be reformulated to a relative error by division with
the variance. For the complex-valued transfer function, the variance is defined as
Var(H) := ⟨|H − ⟨H⟩|2⟩.

For multiple-input-multiple-output systems, the same concept can be applied
in each component of the matrix-valued transfer function. Consequently, the
parameter sets (26) for each component have to be united.

13



Uin Iout

Figure 1: Linear RLC circuit.

5 Test Example: Electric Network

We consider an RLC circuit consisting of a chain of Ncell cells depicted in Figure 1.
It follows that the network includes Ncell capacitances, Ncell − 1 inductances and
Ncell +2 conductances (reciprocal resistances). A voltage source Uin is applied as
input, whereas the branch current Iout through this source represents the output.
This example was introduced in [18].

Modified nodal analysis, see [10], yields a system of DAEs, which can be written
in the form (1). The set of random parameters p consists of the capacitances,
the inductances and the conductances except for the two conductances at the
boundaries. The matrix C(p) includes the capacitances as well as inductances,
whereas the conductances are given in G(p). We choose uniform distributions
with ranges varying 10% around their mean values. We apply the mean values
C̄ = 10−9 for all capacitances, L̄ = 10−6 for all inductances and Ḡ = 1 for all
conductances except for the two conductances at the boundaries, which are fixed
to Gbd = 2. The dimensions of the state space and the random space result to
N = 2Ncell + 1 and Q = 3Ncell − 1, respectively.

Due to the uniform distributions, the gPC expansions involve the Legendre poly-
nomials. Sensitivity coefficients are approximated via the truncation (21), where
we choose the maximum degree D = 2 of the polynomials.

As mentioned in Sect. 4.3, the real part and imaginary part of the transfer func-
tion have to be analysed separately. However, the sensitivities of the real part
and imaginary part are similar in this example and agree to the sensitivity of the
absolute value. Thus we present the total sensitivities only for the absolute value
of the transfer function for shortness.

Firstly, we arrangeNcell = 10, which yieldsN = 21 state variables and a moderate
number of Q = 29 random variable. It follows that M = 465 basis functions
appear in the truncated gPC expansion due to M = (D+Q)!/(D!Q!). We apply
three approaches to compute approximations of the gPC coefficients:

14
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Figure 2: Expected value (left) and standard deviation (right) of absolute value
of transfer function computed by the intrusive method (Ncell = 10).

(i) nonintrusive method: quadrature using the Stroud-5 formula [23] in Q = 29
dimensions, which results in K = 1, 683 nodes;

(ii) intrusive method: stochastic Galerkin method with a system (13) of dimen-
sion MN = 9, 765;

(iii) intrusive method with state space reduction: the system from (ii) is reduced
to dimension Nred = 100 by a Krylov subspace technique to achieve moment
matching in a single point s0, see [7]. We choose s0 = 105i.

Figure 2 illustrates the expected value and the standard deviation of the trans-
fer function reconstructed by the gPC coefficients of the intrusive method. The
resulting sensitivity coefficients (22) are depicted for the three techniques and
frequencies ω ∈ [1, 1015] in Figure 3, Figure 4 and Figure 5, repectively. We ob-
serve a good agreement of the different approaches. Just a single capacitance is
dominating for high frequencies, whereas no capacitance is essential for low fre-
quencies. This dominant capacitance is most adjacent to the output current Iout.
The inductances exhibit a decreasing sequence of sensitivities with respect to
their distances to the output current. The sensitivities of the conductances also
form a decreasing sequence for high frequencies. However, the conductances are
all equally important for low frequencies ω < 104. Thus we obtain a promising
potential for MOR in random space for high frequencies, whereas just the ran-
domness in the capacitances and inductances can be neglected for low frequencies.
For frequencies ω > 1014, the nonintrusive scheme (i) yields physically unreason-
able results. However, the variance is tiny for such frequencies, see Figure 2
(right), and thus we are not interested in this region for uncertainty quantifi-
cation. Furthermore, the approach (iii) causes incorrect values for frequencies
ω > 1012, since this domain is far away from the point ω0 = 105 of the moment
matching.
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Figure 3: Sensitivities from nonintrusive method (Ncell = 10).
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Figure 4: Sensitivities from intrusive method (Ncell = 10).
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Figure 5: Sensitivities from intrusive method with a reduction of the state space
(Ncell = 10).
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Figure 6: Expected value (left) and variance (right) of output current in transient
simulation of the reduced model (Ncell = 10).

In the MOR, we consider the real part and imaginary part separately now. We
choose a single frequency ω̂ := 106 (Iω = {ω̂}). Three dominating parameters
appear for the real part, whereas four essential parameters (including the previous
three) are found for the imaginary part. These four elements consist of the two
inductances and the two conductances, which are closest to the output current,
see Figure 1. Let the sum of their sensitivities (22) be equal to 1 − η. The
values η are specified in Table 2. Thus we replace all other random variables
by their constant mean values. To verify the reduced order model, a transient
simulation is performed in the interval [0, 3T ] for ω̂ = 2π

T
with input voltage

u(t) = sin(ω̂t) and initial values identical to zero. We calculate an approximation
of the expected value and the variance of the output current by a Gauss-Legendre
quadrature with 44 grid points for the four active random variables. The implicit
Euler method with constant step sizes yields a numerical solution of the initial
value problems of (1), see [11]. Figure 6 illustrates the results. For comparison,
we resolve the original unreduced problem by a quasi Monte-Carlo method with
20,000 samples. Table 2 shows the maximum differences in [0, 3T ] for the expected
value and the variance. The MOR of the random space is successful, since the
difference in the variance represents ca. 1% of the magnitude of the variance.

Secondly, we select Ncell = 35 to simulate a problem for a high-dimensional
random space with Q = 104 random variables, while the dimension of the state
space becomes N = 71. The truncated gPC expansions exhibit M = 5, 565 basis
functions. Now we cannot afford the intrusive approach (ii) or (iii), since at least
one linear system of dimension MN = 395, 115 has to be solved. A direct LU -
decomposition becomes too costly. An iterative solution is also critical, since the
matrix of the linear system is not symmetric and positive definite. Thus we apply
only the nonintrusive method (i) in the numerical simulation, where the scheme
Stroud-5 involves K = 21, 633 nodes in the high-dimensional space. Figure 7
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Figure 7: Expected value (left) and standard deviation (right) of absolute value
of transfer function computed by the intrusive method (Ncell = 35).
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Figure 8: Sensitivities from nonintrusive method (Ncell = 35).

depicts the approximations of the expected value and the standard deviation
of the transfer function. The reconstructed sensitivities (22) are illustrated in
Figure 8. We recognise that the behaviour agrees qualitatively to the previous
case of Ncell = 10. Again dubious sensitivity coefficients appear in domains with
a tiny variance.

At the frequency ω̂ := 109 (Iω = {ω̂}), just a single capacitance and a single
inductance are dominating. Table 2 characterises the sum of the two sensitiv-
ities (22). We freeze all other random variables in our MOR. We recheck our
strategy again by a transient simulation using the input voltage u(t) = sin(ω̂t).
Figure 9 demonstrates the expected value and the variance of the output cur-
rent, which are computed by a Gauss-Legendre quadrature with 102 nodes in the
two active random variables. For comparison, a quasi Monte-Carlo simulation
with 100,000 samples is applied to the unreduced problem with Q = 104 random
variables. The maximum differences in the interval [0, 3T ] between data of the
reduced and the unreduced problem are shown in Table 2. Again the reduced or-
der model represents a good approximation, since the differences for the variance
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Figure 9: Expected value (left) and variance (right) of output current in transient
simulation of the reduced model (Ncell = 35).

Table 2: Values η from the sum of sensitivities 1− η of selected random variables
and maximum differences for t ∈ [0, 3T ] in expected value and variance of output
current between reduced and unreduced problem for the two test cases.

η for η for max. diff. max. diff.
Ncell Q ω̂ real part imag. part expected v. variance
10 29 106 2 · 10−3 8 · 10−3 1.2 · 10−4 3.5 · 10−6

35 104 109 4 · 10−7 7 · 10−7 9 · 10−5 4 · 10−7

come up to just ca. 0.1% of the magnitude of the variance.

6 Conclusions

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At
vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren,
no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor
sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt
ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et
accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea
takimata sanctus est Lorem ipsum dolor sit amet.

19



Acknowledgements

The authors would like to thank Dr. Michael Striebel (ZF Lenksysteme GmbH,
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Appendix

Proof of Theorem 1:

Since we assume independent traditional random distributions, densitities ρq, ρr
are available corresponding to the measures µq, µr. We define the functions

u(q) :=

∫
Πr

f(q, r)ρr(r) dr − f0, v(r) :=

∫
Πq

f(q, r)ρq(q) dq − f0.

The gPC expansion of f yields

u(q) =
∑

i∈Iu,i̸=0

fiΦi(q, r), v(r) =
∑

i∈Iv ,i ̸=0

fiΦi(q, r).

It holds that i ∈ Iu if and only if Φi does not depend on some variable in r and
i ∈ Iv if and only if Φi does not depend on some variable in q. Furthermore, let

w(q, r) :=
∑
i∈Iw

fiΦi(q, r)

with i ∈ Iw if and only if Φi depends on at least one variable in q and one variable
in r. Thus i = 0 is not within Iw. It holds that f(q, r) = f0+u(q)+v(r)+w(q, r).
A substitution of the random variables r by constants r0 yields the difference

f(q, r)− f(q, r0) = v(r) + w(q, r)− v(r0)− w(q, r0).

Mimicing the steps for the proof of Theorem 2 in [21], it follows that a set B with
µr(B) ≥ 1− ε exists such that

δ(r0)
2 <

1 + ε−1

Var(f)

∑
i∈Iv∪Iw,i ̸=0

f 2
i

for all r0 ∈ B. The definitions of the index sets implies (Iv\{0}) ∪ Iw = Ir. We
recall that Ij for j = 1, . . . , Q is defined by i ∈ Ij if and only if Φi depends on
the random variable pj. If i ∈ Ir, then there is a variable pj in r (j > Qred) such
that i ∈ Ij. The definition (20) yields

1

Var(f)

∑
i∈Ir

f 2
i ≤ 1

Var(f)

Q∑
j=Qred+1

∑
i∈Ij

f 2
i =

Q∑
j=Qred+1

Sj,

which completes the proof. □
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Proof of Theorem 2:

Let H̃(s, p) := H(s, q, r0) be the approximation of the exact transfer function
H(s, p). We obtain by using the Cauchy-Schwarz inequality in L2(Iω)

max
t>0

|y(t, p)− ỹ(t, p)| ≤ max
t>0

∣∣∣∣ 12π
∫
R

(Y (iω, p)− Ỹ (iω, p))eiωt dω

∣∣∣∣
≤ max

t>0

1

2π

∫
R

|Y (iω, p)− Ỹ (iω, p)| ·
∣∣eiωt∣∣ dω

=
1

2π

∫
R

|H(iω, p)− H̃(iω, p)| · |U(iω)| dω

=
1

2π

∫
Iω

|H(iω, p)− H̃(iω, p)| · |U(iω)| dω

≤ 1

2π

(∫
Iω

|H(iω, p)− H̃(iω, p)|2 dω
) 1

2
(∫

Iω

|U(iω)|2 dω
) 1

2

≤
(

1

2π

∫
Iω

|H(iω, p)− H̃(iω, p)|2 dω
) 1

2
(∫ ∞

0

|u(t)|2 dt
) 1

2

pointwise for p ∈ Π. For Iω = R, this estimate is already given in [9], page 2. It
follows that

⟨|y(t, p)− ỹ(t, p)|2⟩ ≤
⟨

1

2π

∫
Iω

|H(iω, p)− H̃(iω, p)|2 dω
⟩
∥u(t)∥2L2([0,∞))

=

(
1

2π

∫
Iω

⟨|H(iω, p)− H̃(iω, p)|2⟩ dω
)
∥u(t)∥2L2([0,∞))

=

(
1

2π

∫
Iω

e(iω, r0)
2 dω

)
∥u(t)∥2L2([0,∞))

for each t > 0 using the definition (27) of the error e. Taking the square root
yields the desired formula. □
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