3,239 research outputs found

    Beyond Powerpoint: Innovative Ways to Engage Counselors-in-Training

    Get PDF

    Role of the experimental filter in obtaining the Arrhenius plot in multifragmentation reactions

    Full text link
    Recently it has been argued that the linear relation between the transverse energy and the apparent probability to emit a fragment proves that the total system is in thermal equilibrium. It is shown, for a specific reaction Xe+Sn at 50 A.MeV, that the same behavior is obtained in the context of Quantum Molecular Dynamical without invoking the idea of equilibrium. The linear dependance is shown to be a detector effect.Comment: 11 pages, 4 Postscript figures. Submitted Phys. Rev. Let

    Studying the nuclear mass composition of Ultra-High Energy Cosmic Rays with the Pierre Auger Observatory

    Get PDF
    The Fluorescence Detector of the Pierre Auger Observatory measures the atmospheric depth, XmaxX_{max}, where the longitudinal profile of the high energy air showers reaches its maximum. This is sensitive to the nuclear mass composition of the cosmic rays. Due to its hybrid design, the Pierre Auger Observatory also provides independent experimental observables obtained from the Surface Detector for the study of the nuclear mass composition. We present XmaxX_{max}-distributions and an update of the average and RMS values in different energy bins and compare them to the predictions for different nuclear masses of the primary particles and hadronic interaction models. We also present the results of the composition-sensitive parameters derived from the ground level component.Comment: Proceedings of the 12th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2011, Munich, German

    A Three-Point Cosmic Ray Anisotropy Method

    Full text link
    The two-point angular correlation function is a traditional method used to search for deviations from expectations of isotropy. In this paper we develop and explore a statistically descriptive three-point method with the intended application being the search for deviations from isotropy in the highest energy cosmic rays. We compare the sensitivity of a two-point method and a "shape-strength" method for a variety of Monte-Carlo simulated anisotropic signals. Studies are done with anisotropic source signals diluted by an isotropic background. Type I and II errors for rejecting the hypothesis of isotropic cosmic ray arrival directions are evaluated for four different event sample sizes: 27, 40, 60 and 80 events, consistent with near term data expectations from the Pierre Auger Observatory. In all cases the ability to reject the isotropic hypothesis improves with event size and with the fraction of anisotropic signal. While ~40 event data sets should be sufficient for reliable identification of anisotropy in cases of rather extreme (highly anisotropic) data, much larger data sets are suggested for reliable identification of more subtle anisotropies. The shape-strength method consistently performs better than the two point method and can be easily adapted to an arbitrary experimental exposure on the celestial sphere.Comment: Fixed PDF erro

    Educational studies of cosmic rays with telescope of Geiger-Muller counters

    Get PDF
    A group of high school students (XII Liceum) in the framework of the Roland Maze Project has built a compact telescope of three Geiger-Muller counters. The connection between the telescope and PC computer was also created and programed by students involved in the Project. This has allowed students to use their equipment to perform serious scientific measurements concerning the single cosmic ray muon flux at ground level and below. These measurements were then analyzed with the programs based on the 'nowadays' knowledge on statistics. An overview of the apparatus, methods and results were presented at several students conferences and recently won the first prize in a national competition of high school students scientific work. The telescope itself, in spite of its 'scientific' purposes, is built in such a way that it is hung on a wall in a school physics lab and counts muons continuously. This can help to raise the interest for studying physics among others. At present a few (3) groups of young participants of the Roland Maze Project have already built their own telescopes for their schools and some others are working on it. This work is a perfect example of what can be done by young people when respective opportunities are created by more experienced researchers and a little help and advice is given.Comment: 5 figures, 10 page

    On the influence of statistics on the determination of the mean value of the depth of shower maximum for ultra high energy cosmic ray showers

    Get PDF
    The chemical composition of ultra high energy cosmic rays is still uncertain. The latest results obtained by the Pierre Auger Observatory and the HiRes Collaboration, concerning the measurement of the mean value and the fluctuations of the atmospheric depth at which the showers reach the maximum development, Xmax, are inconsistent. From comparison with air shower simulations it can be seen that, while the Auger data may be interpreted as a gradual transition to heavy nuclei for energies larger than ~ 2-3x10^18 eV, the HiRes data are consistent with a composition dominated by protons. In Ref. [1] it is suggested that a possible explanation of the observed deviation of the mean value of Xmax from the proton expectation, observed by Auger, could originate in a statistical bias arising from the approximated exponential shape of the Xmax distribution, combined with the decrease of the number of events as a function of primary energy. In this paper we consider a better description of the Xmax distribution and show that the possible bias in the Auger data is at least one order of magnitude smaller than the one obtained when assuming an exponential distribution. Therefore, we conclude that the deviation of the Auger data from the proton expectation is unlikely explained by such statistical effect.Comment: To be published in Journal of Physics G: Nuclear and Particle Physic

    TeV gamma-UHECR anisotropy by decaying nuclei in flight: first neutrino traces?

    Full text link
    Ultra High Cosmic Rays) made by He-like lightest nuclei might solve the AUGER extragalactic clustering along Cen A. Moreover He like UHECR nuclei cannot arrive from Virgo because the light nuclei fragility and opacity above a few Mpc, explaining the Virgo UHECR absence. UHECR signals are spreading along Cen-A as observed because horizontal galactic arms magnetic fields, bending them on vertical angles. Cen A events by He-like nuclei are deflected as much as the observed clustered ones; proton will be more collimated while heavy (iron) nuclei are too much dispersed. Such a light nuclei UHECR component coexist with the other Auger heavy nuclei and with the Hires nucleon composition. Remaining UHECR spread group may hint for correlations with other gamma (MeV-Al^{26} radioactive) maps, mainly due to galactic SNR sources as Vela pulsar, the brightest, nearest GeV source. Other nearest galactic gamma sources show links with UHECR via TeV correlated maps. We suggest that UHECR are also heavy radioactive galactic nuclei as Ni^{56}, Ni^{57} and Co^{60} widely bent by galactic fields. UHECR radioactivity (in β\beta and γ\gamma channels) and decay in flight at hundreds keV is boosted (by huge Lorentz factor (nearly a billion) leading to PeVs electrons and consequent synchrotron TeVs gamma offering UHECR-TeV correlated sky anisotropy. Moreover also rarest and non-atmospheric electron and tau neutrinos secondaries at PeVs, as the first two rarest shower just discovered in ICECUBE, maybe the first signature of such expected radioactive secondary tail.Comment: 7 pages,3 figures. arXiv admin note: substantial text overlap with arXiv:1201.015

    What Matters to Australians: Our Social, Political and Economic Values

    Full text link
    Societies are complex entities with competing and conflicting and supporting and reinforcing characteristics. This study, part of a multiyear project sponsored by the Australian Research Council (ARC) in conjunction with the University of Technology, Sydney and Melbourne Business School, seeks to chart the social, economic and political preferences of our society using a unique methodology that provides us with a more accurate and robust picture of how we, as citizens, make fundamental trade-offs about things of material interest to our society. The study was conducted in Australia with more than 1,500 participants chosen to match the profile of the voting age population. Similar studies were conducted in the UK, USA and Germany. Examined were 16 categories of general social, economic and political issues that ranged from the local (e.g., crime & public safety) to the global (e.g., global security) along with 113 subissues that also varied from the local (e.g., public transport and children’s schooling) to the global (e.g., nuclear non-proliferation and third world debt). This information was linked to information on the population’s religious and political activities, its general demographics, and donating and volunteering activities with civil society organisations
    • …
    corecore