3,171 research outputs found
Atmospheric Calorimetry above 10 eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory
The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a
calorimeter to measure extensive air-showers created by particles of
astrophysical origin. Some of these particles carry joules of energy. At these
extreme energies, test beams are not available in the conventional sense. Yet
understanding the energy response of the observatory is important. For example,
the propagation distance of the highest energy cosmic-rays through the cosmic
microwave background radiation (CMBR) is predicted to be strong function of
energy. This paper will discuss recently reported results from the observatory
and the use of calibrated pulsed UV laser "test-beams" that simulate the
optical signatures of ultra-high energy cosmic rays. The status of the much
larger 200,000 km companion detector planned for the northern hemisphere
will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in
High Energy Physic
Resolving on 100 pc scales the UV-continuum in Lyman- emitters between redshift 2 to 3 with gravitational lensing
We present a study of seventeen LAEs at redshift 23 gravitationally
lensed by massive early-type galaxies (ETGs) at a mean redshift of
approximately 0.5. Using a fully Bayesian grid-based technique, we model the
gravitational lens mass distributions with elliptical power-law profiles and
reconstruct the UV-continuum surface brightness distributions of the background
sources using pixellated source models. We find that the deflectors are close
to, but not consistent with isothermal models in almost all cases, at the
-level. We take advantage of the lensing magnification (typically
20) to characterise the physical and morphological properties of
these LAE galaxies. From reconstructing the ultra-violet continuum emission, we
find that the star-formation rates range from 0.3 to 8.5 M yr
and that the galaxies are typically composed of several compact and diffuse
components, separated by 0.4 to 4 kpc. Moreover, they have peak star-formation
rate intensities that range from 2.1 to 54.1 M yr kpc.
These galaxies tend to be extended with major axis ranging from 0.2 to 1.8 kpc
(median 561 pc), and with a median ellipticity of 0.49. This morphology is
consistent with disk-like structures of star-formation for more than half of
the sample. However, for at least two sources, we also find off-axis components
that may be associated with mergers. Resolved kinematical information will be
needed to confirm the disk-like nature and possible merger scenario for the
LAEs in the sample.Comment: 19 pages, 7 figures, accepted for publication on MNRA
A Three-Point Cosmic Ray Anisotropy Method
The two-point angular correlation function is a traditional method used to
search for deviations from expectations of isotropy. In this paper we develop
and explore a statistically descriptive three-point method with the intended
application being the search for deviations from isotropy in the highest energy
cosmic rays. We compare the sensitivity of a two-point method and a
"shape-strength" method for a variety of Monte-Carlo simulated anisotropic
signals. Studies are done with anisotropic source signals diluted by an
isotropic background. Type I and II errors for rejecting the hypothesis of
isotropic cosmic ray arrival directions are evaluated for four different event
sample sizes: 27, 40, 60 and 80 events, consistent with near term data
expectations from the Pierre Auger Observatory. In all cases the ability to
reject the isotropic hypothesis improves with event size and with the fraction
of anisotropic signal. While ~40 event data sets should be sufficient for
reliable identification of anisotropy in cases of rather extreme (highly
anisotropic) data, much larger data sets are suggested for reliable
identification of more subtle anisotropies. The shape-strength method
consistently performs better than the two point method and can be easily
adapted to an arbitrary experimental exposure on the celestial sphere.Comment: Fixed PDF erro
The SWELLS Survey. I. A large spectroscopically selected sample of edge-on late-type lens galaxies
The relative contribution of baryons and dark matter to the inner regions of
spiral galaxies provides critical clues to their formation and evolution, but
it is generally difficult to determine. For spiral galaxies that are strong
gravitational lenses, however, the combination of lensing and kinematic
observations can be used to break the disk-halo degeneracy. In turn, such data
constrain fundamental parameters such as i) the mass density profile slope and
axis ratio of the dark matter halo, and by comparison with dark matter-only
numerical simulations the modifications imposed by baryons; ii) the mass in
stars and therefore the overall star formation efficiency, and the amount of
feedback; iii) by comparison with stellar population synthesis models, the
normalization of the stellar initial mass function. In this first paper of a
series, we present a sample of 16 secure, 1 probable, and 6 possible strong
lensing spiral galaxies, for which multi-band high-resolution images and
rotation curves were obtained using the Hubble Space Telescope and Keck-II
Telescope as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). The
sample includes 8 newly discovered secure systems. [abridged] We find that the
SWELLS sample of secure lenses spans a broad range of morphologies (from
lenticular to late-type spiral), spectral types (quantified by Halpha
emission), and bulge to total stellar mass ratio (0.22-0.85), while being
limited to M_*>10^{10.5} M_sun. The SWELLS sample is thus well-suited for
exploring the relationship between dark and luminous matter in a broad range of
galaxies. We find that the deflector galaxies obey the same size-mass relation
as that of a comparison sample of elongated non-lens galaxies selected from the
SDSS survey. We conclude that the SWELLS sample is consistent with being
representative of the overall population of high-mass high-inclination disky
galaxies.Comment: 21 pages, 6 figures, MNRAS, in pres
The SWELLS survey. IV. Precision measurements of the stellar and dark matter distributions in a spiral lens galaxy
We construct a fully self-consistent mass model for the lens galaxy J2141 at
z=0.14, and use it to improve on previous studies by modelling its
gravitational lensing effect, gas rotation curve and stellar kinematics
simultaneously. We adopt a very flexible axisymmetric mass model constituted by
a generalized NFW dark matter halo and a stellar mass distribution obtained by
deprojecting the MGE fit to the high-resolution K'-band LGSAO imaging data of
the galaxy, with the (spatially constant) M/L ratio as a free parameter. We
model the stellar kinematics by solving the anisotropic Jeans equations. We
find that the inner logarithmic slope of the dark halo is weakly constrained
(gamma = 0.82^{+0.65}_{-0.54}), and consistent with an unmodified NFW profile.
We infer the galaxy to have (i) a dark matter fraction within 2.2 disk radii of
0.28^{+0.15}_{-0.10}, independent of the galaxy stellar population, implying a
maximal disk for J2141; (ii) an apparently uncontracted dark matter halo, with
concentration c_{-2} = 7.7_{-2.5}^{+4.2} and virial velocity v_{vir} =
242_{-39}^{+44} km/s, consistent with LCDM predictions; (iii) a slightly oblate
halo (q_h = 0.75^{+0.27}_{-0.16}), consistent with predictions from
baryon-affected models. Comparing the stellar mass inferred from the combined
analysis (log_{10} Mstar/Msun = 11.12_{-0.09}^{+0.05}) with that inferred from
SPS modelling of the galaxies colours, and accounting for a cold gas fraction
of 20+/-10%, we determine a preference for a Chabrier IMF over Salpeter IMF by
a Bayes factor of 5.7 (substantial evidence). We infer a value beta_{z} = 1 -
sigma^2_{z}/sigma^2_{R} = 0.43_{-0.11}^{+0.08} for the orbital anisotropy
parameter in the meridional plane, in agreement with most studies of local disk
galaxies, and ruling out at 99% CL that the dynamics of this system can be
described by a two-integral distribution function. [Abridged]Comment: Accepted for publication in MNRAS. 17 pages, 9 figure
Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503
Measuring the relative mass contributions of luminous and dark matter in
spiral galaxies is important for understanding their formation and evolution.
The combination of a galaxy rotation curve and strong lensing is a powerful way
to break the disk-halo degeneracy that is inherent in each of the methods
individually. We present an analysis of the 10-image radio spiral lens
B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new
adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for
the lens galaxy rotation curve and the source redshift. We construct a
three-dimensionally axisymmetric mass distribution with 3 components: an
exponential profile for the disk, a point mass for the bulge, and an NFW
profile for the halo. The mass model is simultaneously fitted to the kinematics
and the lensing data. The NFW halo needs to be oblate with a flattening of
a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests
that baryons are effective at making the halos oblate near the center. The
lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we
obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark
matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is
f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total
circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting
that the disk is marginally submaximal. The stellar mass of the disk from our
modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the
cold gas contributes ~20% to the total disk mass. In comparison to the stellar
masses estimated from stellar population synthesis models, the stellar initial
mass function of Chabrier is preferred to that of Salpeter by a probability
factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments,
accepted for publication in Ap
- …